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Efficient and robust search of microbial 
genomes via phylogenetic compression
 

Karel Břinda    1,2  , Leandro Lima3, Simone Pignotti    2,4, 
Natalia Quinones-Olvera    2, Kamil Salikhov4, Rayan Chikhi    5, 
Gregory Kucherov    4, Zamin Iqbal    3,6 & Michael Baym    2 

Comprehensive collections approaching millions of sequenced genomes 
have become central information sources in the life sciences. However, 
the rapid growth of these collections has made it effectively impossible 
to search these data using tools such as the Basic Local Alignment Search 
Tool (BLAST) and its successors. Here, we present a technique called 
phylogenetic compression, which uses evolutionary history to guide 
compression and efficiently search large collections of microbial genomes 
using existing algorithms and data structures. We show that, when applied 
to modern diverse collections approaching millions of genomes, lossless 
phylogenetic compression improves the compression ratios of assemblies, 
de Bruijn graphs and k-mer indexes by one to two orders of magnitude. 
Additionally, we develop a pipeline for a BLAST-like search over these 
phylogeny-compressed reference data, and demonstrate it can align genes, 
plasmids or entire sequencing experiments against all sequenced bacteria 
until 2019 on ordinary desktop computers within a few hours. Phylogenetic 
compression has broad applications in computational biology and may 
provide a fundamental design principle for future genomics infrastructure.

Comprehensive collections of genomes have become an invaluable 
resource for research across the life sciences. However, their expo-
nential growth, exceeding improvements in computation, makes their 
storage, distribution and analysis increasingly cumbersome1. As a 
consequence, traditional search approaches, such as BLAST2 and its 
successors, are becoming less effective with the available reference 
data, which poses a major challenge for organizations such as the 
National Center for Biotechnology Information (NCBI) or European 
Bioinformatics Institute (EBI) in maintaining the searchability of  
their repositories.

The keys to achieving search scalability are compressive 
approaches that aim to store and analyze genomes directly in the 
compressed domain3,4. Genomic data have low fractal dimension 
and entropy5, offering the possibility of efficient search algorithms5.  
However, despite the progress in compression-related areas of 

computer science4–15, it remains a practical challenge to compute  
parsimonious compressed representations of the exponentially grow-
ing public genome collections.

Microbial collections are particularly difficult to compress due to 
the huge number of genomes and their exceptional levels of genetic 
diversity, which reflect the billions of years of evolution across the 
domain. Even though substantial efforts have been made to construct 
comprehensive collections of all sequenced microbial genomes, such 
as the 661k assembly collection16 (661k pre-2019 bacteria) and the 
BIGSIdata de Bruijn graph collection17 (448k de Bruijn graphs of all pre-
2017 bacterial and viral raw sequence), the resulting data archives and 
indexes range from hundreds of gigabytes (661k) to tens of terabytes 
(BIGSIdata). This scale exceeds the bandwidth, storage and data pro-
cessing capacities of most users, making local computation on these 
data functionally impossible.
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This general scheme can be instantiated to individual protocols for 
various data types as we show in Fig. 1c; for instance, a set of bacterial 
assemblies can be phylogenetically compressed by XZ (the Lempel– 
Ziv–Markov chain algorithm7, implemented in XZ Utils32) by a left-to- 
right enumeration of the assemblies, with respect to the topology of 
their compressive phylogeny obtained via sketching33.

We implemented phylogenetic compression protocols for assem-
blies, for de Bruijn graphs, and for k-mer indexes in a tool called MiniPhy 
(Minimization via Phylogenetic compression; https://github.com/
karel-brinda/miniphy/). To cluster input genomes, MiniPhy builds upon 
the empirical observation that microbial genomes in public reposito-
ries tend to form clusters corresponding to individual species34, and 
species for individual genomes can be identified rapidly via metagen-
omic classification35 by the Kraken suite26 (Fig. 1b and Methods). As 
some of the resulting clusters may be too large or too small, and thus 
unbalancing downstream parallelization, it further redistributes the 
clustered genomes into size-balanced and diversity-balanced batches 
(Methods and Extended Data Fig. 1). This batching enables compres-
sion and search in a constant time (using one node per batch on a 
cluster) or linear time (using a single machine; Methods). For every 
batch, a compressive phylogeny—either provided by the user or com-
puted automatically using Mashtree33/Attotree (https://github.com/
karel-brinda/attotree/; Methods)—is then used for data reordering 
(Methods). Finally, the obtained reordered data are compressed per 
batch using XZ with particularly optimized parameters (Methods), 
and possibly further recompressed or indexed using some general or 
specialized low-level tool, such as MBGC18 or COBS36 (Methods).

Improved compression of large genome collections
We evaluated phylogenetic compression using five microbial collec-
tions, selected as representatives of the compression-related trade-offs 
between characteristics including data quality, genetic diversity, 
genome size and collection size (GISP, NCTC3k, SC2, 661k and BIGSI-
data; Methods, Supplementary Note 2 and Supplementary Table 1). 
We quantified the distribution of their underlying phylogenetic signal 
(Methods, Supplementary Table 2 and Extended Data Fig. 2), used 
them to calibrate the individual steps of the phylogenetic compres-
sion workflow (Methods and Extended Data Figs. 3–5) and evaluated 
the resulting performance, trade-offs and extremal characteristics 
(Methods, Supplementary Table 3 and Extended Data Fig. 6). As one 
extreme, we found that 591,000 severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) genomes can be phylogenetically com-
pressed using XZ to only 18.1 bytes per genome (Methods, Supplemen-
tary Table 3 and Extended Data Figs. 4 and 6), resulting in a file size of 
10.7 Mb (13.2 times more compressed than GZip). A summary detailing 
the sensitivity/stability of performance to various factors is provided 
in Supplementary Note 3.

We found that phylogenetic compression improved the com-
pression of genome assembly collections that comprise hundreds 
of thousands of isolates of over 1,000 species by more than an order 
of magnitude compared to the state-of-the-art approach (Fig. 2a and 
Supplementary Table 3). Specialized high-efficiency compressors 
such as MBGC18 are not directly applicable to highly diverse collec-
tions; therefore, the compression protocols deployed in practice for 
extremely large and diverse collections are still based on the standard 
GZip, such as the 661k collection, containing all bacteria pre-2019 
from the European Nucleotide Archive (ENA)16 (n = 661,405; 805 GB). 
Here, MiniPhy recompressed the collection to 29.0 GB (27.8 times the 
improvement; 43.8 kB per genome, 0.0898 bits per base pair, 5.23 bits 
per distinct k-mer) using XZ as a low-level tool, and further to 20.7 GB 
(38.9 times the improvement; 31.3 kB per genome, 0.0642 bits per base 
pair, 3.74 bits per distinct k-mer) when combined with MBGC18 that also 
accounts for reverse complements (Fig. 2a, Supplementary Table 3 and 
Methods). Additionally, we found that the lexicographically ordered 
ENA datasets, as being partially phylogenetically ordered, can serve 

We reasoned that the redundancies among microbial genomes are 
efficiently predictable, as they reflect underlying processes that cre-
ated the collection: evolution and sampling. While genomes in nature 
can accumulate substantial diversity through vertical and horizontal 
mutational processes, this process is functionally sparse, and at the 
same time subjected to selective pressures and drift that limit their 
overall entropy. The amount of sequenced diversity is further limited 
by selective biases due to culture and research or clinical interests, 
resulting in sequencing efforts being predominantly focused on nar-
row subparts of the tree of life, associated with model organisms and 
human pathogens16. Importantly, such subtrees have been shown to be 
efficiently compressible when considered in isolation, as low-diversity 
groups of oversampled phylogenetically related genomes, such as iso-
lates of the same species under epidemiological surveillance18,19. This 
suggests that the compression of comprehensive collections could be 
informed by their evolutionary history, reducing the complex problem 
of general genome compression to the more tractable problem of local 
compression of phylogenetically grouped and ordered genomes.

Phylogenetic relatedness is effective at estimating the similarity 
and compressibility of microbial genomes and their data representa-
tions. The closer two genomes are phylogenetically, the closer they are 
likely to be in terms of mathematical similarity measures, such as the 
edit distance or k-mer distances20, and thus also more compressible. 
Importantly, this principle holds not only for genomes, but also for de 
Bruijn graphs and many k-mer indexes. We reasoned that phylogenetic 
trees could be embedded into computational schemes to group similar 
data together, as a preprocessing step for boosting local compressibil-
ity of data. The well-known Burrows–Wheeler transform21 has a similar 
purpose in a different context and similar ideas have been used for read 
and alignment compression22–25. Other related ideas have previously 
been used for scaling up metagenomic classification using taxonomic 
trees26–29 and search in protein databases30,31.

At present, the public version of BLAST is frequently used to iden-
tify the species of a given sequence by comparing it to exemplars, but 
it is practically impossible to align against all sequenced bacteria. 
Despite the increasing number of bacterial assemblies available in the 
NCBI repositories, the searchable fraction of bacteria is exponentially 
decreasing over time (Fig. 1a and Supplementary Note 1). This limits our 
ability to study bacteria in the context of their known diversity, as the 
gene content of different strains can vary substantially, and important 
hits can be missed due to the database being unrepresentative.

Here, we present a solution to the problem of searching vast librar-
ies of microbial genomes: ‘phylogenetic compression’, a technique 
for an evolutionary-guided compression of arbitrarily sized genome 
collections. We show that the underlying evolutionary structure of 
microorganisms can be efficiently approximated and used as a guide 
for existing compression and indexing tools. Phylogenetic compres-
sion can then be applied to collections of assemblies, de Bruijn graphs 
and k-mer indexes, and run in parallel for efficient processing. The 
resulting compression yields benefits ranging from a quicker download 
(reducing Internet bandwidth and storage costs), to efficient search 
on personal computers. We show this by implementing BLAST-like 
search on all sequenced pre-2019 bacterial isolates, which allow us to 
align genes, plasmids and sequencing reads on an ordinary laptop or 
desktop computer within a few hours, a task that was infeasible with 
previous techniques.

Results
We developed a technique called phylogenetic compression for evo-
lutionarily informed compression and search of microbial collections 
(Fig. 1; https://brinda.eu/mof/). Phylogenetic compression combines 
four ingredients (Fig. 1b): (1) clustering of samples into ‘phylogeneti-
cally related groups’, followed by (2) inference of a ‘compressive phy-
logeny’ that acts as a template for (3) ‘data reordering’, before (4) the 
application of a calibrated ‘low-level compressor/indexer’ (Methods). 
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as an approximation of phylogenetic compression, with compres-
sion performance only degraded by a factor of 4.17 compared to full 
phylogenetic compression (Supplementary Table 3 and Methods).

We then studied de Bruijn graphs, a common genome represen-
tation directly applicable to raw-read data17,37, and found that phy-
logenetic compression can improve state-of-the-art approaches by 
one to two orders of magnitude (Fig. 2a, Supplementary Table 3 and 
Methods). As standard and colored de Bruijn graphs lack methods for 
joint compression at the scale of millions of genomes and thousands of 
species, single graphs are often distributed individually38. For instance, 
the graphs of the BIGSIdata collection17, comprising all viral and bac-
terial genomes from pre-2017 ENA (n = 447,833), are provided in an 

online repository in the McCortex binary format39 and occupy in total 
>16.7 TB (Methods). Here, we retrieved n = 425,160 graphs from the 
Internet (94.5% of the original count; Methods) and performed loss-
less recompression using the MiniPhy methodology, with a bottom-up 
propagation of the k-mer content, to 52.3 GB (319 times the improve-
ment; 123 kB per genome, 0.248 bits per base pair (in unitigs), 10.2 bits 
per distinct k-mer; Fig. 2a, Supplementary Table 3 and Methods). Fur-
ther, as recent advances in de Bruijn graph indexing15 may lead to more 
efficient storage protocols in the future, we also compared MiniPhy 
to MetaGraph37, an optimized tool for indexing on high-performance 
servers with a large amount of memory. Here, we found that MiniPhy 
still provided an improvement of a factor of 5.78 (Methods).
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Fig. 1 | Overview of phylogenetic compression and its applications to different 
data types. a, Exponential decrease of data searchability over the past two 
decades illustrated by the size of the BLAST NT database divided by the size 
of the NCBI Bacterial Assembly database (Supplementary Note 1). b, The first 
three stages of phylogenetic compression before the application of a low-level 
compressor/indexer. (i) A given collection is partitioned into size-balanced and 
diversity-balanced batches of phylogenetically related genomes (for example, 
using metagenomic classification of the original reads). (ii) The input data are 
reversibly reordered based on a compressive phylogeny, performed separately 

for each batch. c, Examples of specific protocols for phylogenetic compression 
of individual data types, performed separately for each batch. (i) Assemblies  
are sorted from left to right according to the topology of the phylogeny,  
and then compressed using a low-level compressor such as XZ7,32 or MBGC18.  
(ii) For de Bruijn graphs, k-mers are propagated in a bottom-up fashion along 
the phylogeny, and the resulting k-mer sets are compacted into simplitigs28,53,54, 
which are then compressed using XZ. (iii) For BIGSI k-mer indexes, Bloom filters 
(in columns) are ordered from left to right according to the phylogeny, and then 
compressed using XZ.
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Phylogenetic compression can be applied to any genomic data 
structure based on a genome-similarity-preserving representation 
(Methods and Supplementary Note 4). We demonstrate this using 
the Bitsliced Genomic Signature Index (BIGSI)17 (Fig. 1c(iii)), a k-mer 
indexing method using an array of Bloom filters, which is widely used 
for large-scale genotyping and presence/absence queries of genomic 
elements16,17. Using the same data, batches and orders as inferred previ-
ously, we phylogenetically compressed the BIGSI indexes of the 661k 
collection, computed using a modified version of COBS36 (Supple-
mentary Table 4 and Methods). Phylogenetic compression provided  
8.51 times the overall improvement compared to the original index 
(from 937 GB to 110 GB), making it finally usable on ordinary comput-
ers. After we further omitted the 3.24% of genomes that had not passed 
quality control in the original study16 (the 661k-HQ collection; visual-
ized in Extended Data Fig. 7), the resulting phylogenetic compression 
ratio improved to 12.3× (72.8 GB; Supplementary Table 4).

To better understand the impact of phylogenetic compression 
across the tree of life, we analyzed the 661k MiniPhy batches of assem-
blies and COBS indexes, both before and after compression (Extended 
Data Fig. 8). We found that although the top ten species constituted 
nearly 80% of the genomic content, they occupied less than half of 
the database space after compression for both genome representa-
tions (Extended Data Fig. 8). Conversely, the ‘dustbin’ batches, which 
include genomes from sparsely sampled species, expanded to occupy a 
proportion that was 9.4 times larger in the database after compression, 
compared to their precompression proportion, again for both repre-
sentations (Extended Data Fig. 8). This consistent effect of compres-
sion on both assemblies and COBS indexes suggests that phylogenetic 
compressibility adheres to the same principles, irrespective of the 
specific genome representation used, with divergent genomes being 
a major driver of the final size.

BLAST-like alignment to all bacteria on desktops in hours
To demonstrate the practical utility of phylogenetic compression, we 
used it to implement BLAST-like search across all high-quality pre-2019 
bacteria for standard desktop and laptop computers (Phylign; https://
github.com/karel-brinda/phylign/; Methods). For a given a set of que-
ries, Phylign first identifies for each query those genomes that match 
best globally across the whole 661k-HQ collection, by proceeding via 
progressive in-memory decompression and querying of individual 
phylogenetically compressed COBS36 k-mer indexes (described above). 
Subsequently, Phylign iterates over the phylogenetically compressed 
genome assemblies (described above) and computes the correspond-
ing full alignments using on-the-fly instances of Minimap2 (Methods)40. 
The choice of tools was arbitrary, and other programs or core data 
structures could readily be used instead. The resulting requirements 
amount to only 102 GB from disk (for the compressed COBS indexes 
and assemblies: 159 kB per genome, 0.329 bits per base pair, 23.0 bits 

per distinct k-mer; Supplementary Table 5) and 12 GB RAM, and Phylign 
can thus be deployed on most modern laptop and desktop computers.

We first evaluated Phylign with 661k-HQ using three different types 
of queries—resistance genes (the entire ARG-ANNOT database of resist-
ance genes41, n = 1,856), plasmids (EBI plasmid database, n = 2,826), and 
a nanopore sequencing experiment (n = 158,583 reads), with results 
available within 3.9, 11 and 4.3 h, respectively, on an iMac desktop 
(Supplementary Table 6). Benchmarking against other tools was not 
possible, as we were unable to find any tool capable of aligning que-
ries to 661k-HQ in a comparable setup. Therefore, we used the EBI 
plasmid dataset to compare Phylign to BIGSI with its original database 
of 447,833 genomes (which is essentially a subset of 661k-HQ with  
1.43 times less genomes)17. We found that Phylign was over an order 
of magnitude faster (Fig. 2b and Supplementary Table 6); the search 
required 74.1 CPU hours and improved performance by a factor of 
28.6× compared to the same BIGSI benchmark with its smaller database 
(Fig. 2b and Supplementary Table 6), while providing the full align-
ments rather than presence/absence only (Fig. 2b). To our knowledge, 
this is the first time that alignment to a collection of a comparable size 
and diversity has been locally performed.

Discussion
It is hard to overstate the impact on bioinformatics of BLAST2, which 
has allowed biologists across the world to handily and rapidly compare 
their sequence of interest with essentially all known genomes—to the 
extent that the tool name has become a verb. The web version provided 
by NCBI/EBI is so standard that it is easy to overlook how representa-
tive or complete its database is. However, 24 years on, sequencing 
data have far outstripping BLAST’s ability to keep up. Much work has 
gone into approximate solutions15, but full alignment to the complete 
corpus of bacterial genomes has remained effectively impossible. 
We have addressed this problem and made substantial progress, via 
phylogenetic compression, a highly efficient general technique using 
evolutionary history of microorganisms to improve existing compres-
sive data structures and search algorithms by orders of magnitude.  
More concretely, BLAST-like search of all microorganisms is now 
possible, not just for NCBI/EBI, but for anyone on a personal laptop.  
This has wide-ranging benefits, from an easy and rapid download of 
large and diverse genome collections, to reductions in bandwidth 
requirements, transmission/storage costs and computational time.

Elements of our approach and related techniques have been 
previously used in other contexts. Reversible reordering to improve 
compression forms the core of the Burrows–Wheeler transform21 
and its associated indexes42–44, and it has also been used for read 
compression22–25. Tree hierarchies have been applied in metagenomics 
for both lossy27,45,46 and lossless28 reference data compression. Finally, 
a divide-and-conquer methodology has been used to accelerate the 
inference of species trees47. Our approach combines these ideas to 
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improve the scalability and portability of search and alignment in large 
genome databases.

As with all forms of compression, our ability to reduce data is 
fundamentally limited by the underlying entropy. For genome collec-
tions, this is not introduced solely by the underlying genetic signal, 
but it is also tightly connected with the sequencing process and our 
capacity to reconstruct genomes from sequencing reads. The noise in 
the underlying k-mer histograms (Extended Data Fig. 7) suggests that 
any method for compression or search will have to address noise in the 
forms of contamination, missing regions and technological artifacts, 
with legacy data posing a major challenge for both storage and analy-
sis. Future methods may choose to incorporate stricter filtering, and 
as our experiments have demonstrated, this helps not only in reducing 
data volume but also in improving the quality of search outputs; these 
issues may be alleviated by innovative computational strategies, such 
as taxonomic filters48 or sweep deconvolution49. Another limitation of 
our approach is its reliance on phylogenetic trees as a backbone struc-
ture for explaining data redundancies. While this applies in regimes 
where vertical descent predominates or where genetic descent is 
well approximated by tree structure, in cases where it does not (for 
example, within a eukaryotic species), the assumption of a phyloge-
netic tree may not yield substantial gains. In this case, future versions 
may better use alternate graph structures to trees, such as ancestral 
recombination graphs50.

In light of technological development, the benefits of phyloge-
netic compression will grow over time. Currently, only a fraction of the 
world’s microbial diversity has been sequenced. However, as sequenc-
ing becomes more comprehensive, the tree of life will not change, thus 
enhancing the relative advantage of phylogenetic compression. We 
foresee its use ranging from mobile devices to large-scale distributed 
cloud environments and anticipate promising applications in global 
epidemiological surveillance51 and rapid diagnostics52. Overall, the 
phylogenetic compression of data structures has broad applications 
across computational biology and may represent a fundamental design 
principle for future genomics infrastructure.

Online content
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Methods
Conceptual overview of phylogenetic compression
To organize input genomes into phylogenetic trees and compress/
index them in a scalable manner, phylogenetic compression combines 
four conceptual steps.

Step 1: Clustering/batching. The goal of this step (illustrated in 
Fig. 1b(i)) is to partition genomes into batches of phylogenetically 
related genomes, of a limited size and diversity, that can be easily com-
pressed and searched together using highly reduced computational 
resources. During downstream compression, indexing and analyses, 
these individual batches are processed separately, and their maximum 
size and diversity can establish upper bounds on the maximum time 
and space necessary for processing a single batch. For instance, in the 
realm of k-mer aggregative methods (see an overview in ref. 15), this 
corresponds to a matrix decomposition of a large k-mer annotation 
matrix into a series of small matrices that have both dimensions small, 
and analogically in the realm of dictionary compression, to reducing 
the input strings and dictionary sizes.

For microorganisms, clustering can be accomplished rapidly by 
metagenomic classification35 applied to the raw reads or other meth-
ods for species identification. Microbial genomes in public reposi-
tories form distinct clusters, usually (but not always) corresponding 
to individual species34, and metagenomic classification can assign 
individual genomes to these respective clusters, defined by the under-
lying reference database such as NCBI RefSeq35. This requires only a 
constant time per dataset and can be fully parallelized, resulting thus 
in a constant-time clustering if sufficiently many computational nodes 
are available.

The obtained clusters are then reorganized into batches. First, 
too small clusters are merged, creating a special pseudo-cluster called 
dustbin, whose purpose is to collect divergent, weakly compressible 
genomes from sparsely sampled regions of the tree of life. Subse-
quently, the clusters that are too large—such as those corresponding 
to oversampled human pathogens (for example, Salmonella enterica 
or Escherichia coli)—as well as the dustbin are then divided into smaller 
batches, to provide guarantees on the maximum required downstream 
computational resources per one batch. An additional discussion of 
batching is provided in Supplementary Note 5.

Step 2: Inference of a compressive phylogeny. In this step (illus-
trated in Fig. 1b(ii)), the computed batches are equipped with a so- 
called ‘compressive phylogeny’, which is a phylogeny approximating 
the true underlying phylogenetic signal with sufficient resolution 
for compression purposes. If accurate inference methods such as 
RaxML55 cannot be applied due to the associated bioinformatics com-
plexity or high resource requirements, phylogenies can be rapidly 
estimated via lighter approaches such as the Mashtree algorithm33 
(re-implemented more efficiently in Attotree; https://github.com/
karel-brinda/attotree/) instead, with only a negligible impact on the 
resulting compression performance (Extended Data Fig. 5 and Sup-
plementary Note 3).

Step 3: Data reduction/reordering. The compressive phylogenies 
obtained in the previous step serve as a template for phylogenetic 
reordering of individual batches. The specific form of reordering can 
vary depending on the specific data representations, intended applica-
tions and method of subsequent compression or indexing. In principle, 
the reordering can occur in two directions: as a left-to-right genome 
reordering based on the topology of the compressive phylogeny, or 
as a bottom-up reduction of genomic content along the phylogeny  
(followed by left-to-right enumeration). Regardless of the specific 
form, this transformation is always reversible, thus sharing similari-
ties with methods such as the Burrows–Wheeler transform21. Fig. 1b(ii) 
illustrates this via the colored arrows.

Step 4: Compression or indexing using a calibrated low-level tool. 
Finally, the reordered data are compressed or indexed using a low-level 
tool. At this stage, thanks to both phylogeny-based clustering and 
phylogeny-based reordering, the data are highly locally compress-
ible, which enables the use of a wide range of general and specialized 
genome compressors/indexes. Nevertheless, it is crucial to ensure that 
the properties of the underlying algorithms and their parameters are 
closely tailored to the specific characteristics of the input data and their 
intended applications. For instance, to compress genomes in FASTA 
format, compressors based on Lempel–Ziv require the window/dic-
tionary sizes to be large enough to span multiple genomes (Extended 
Data Fig. 3a), and general compressors also critically depend on FASTA 
being in a one-line format (Extended Data Fig. 3b). As a general rule, 
general compressors must always be carefully tested and calibrated 
for specific genomic data types, potentially requiring format cleaning 
and parameter calibration, whereas specialized genome compressors 
and indexers are usually pre-calibrated in their default setting and 
provided with well-tested configuration presets. While in many practi-
cal scenarios, individual batches are compressed/indexed separately, 
some protocols may involve merging reordered batches to create a 
single comprehensive archive/index. This step applies to the results 
shown in Fig. 1c.

The MiniPhy framework for phylogenetic compression
Here, we describe the specific design choices of our implementation 
of phylogenetic compression for assemblies and de Bruijn graphs. 
More information and relevant links, including specific tools such 
as MiniPhy and Phylign and the resulting databases, can be found on 
https://brinda.eu/mof/.

Clustering/batching. As genome collections encountered in practice 
can vary greatly in their properties as well as the available metadata, 
clustering is expected to be performed by the user. The recommended 
procedure is to identify species clusters using standard metagenomic 
approaches, such as those implemented in the Kraken software suite26, 
as the obtained abundance profiles can also be used for quality control 
to filter out those samples that are likely contaminated. The next step is 
to divide the obtained genome clusters into smaller batches, analogi-
cally to the examples in Extended Data Fig. 1 and as discussed in more 
details in Supplementary Note 5 (and the corresponding implementa-
tion in the MiniPhy package, see below). The order in which genomes 
are taken within individual clusters can impact the final compres-
sion performance; based on our experience, lexicographic order with 
accessions and ordering according to the number of distinct k-mers 
per genome provide surprisingly good performance as both of these 
approaches tend to group phylogenetically close genomes closer to 
each other. The protocol can be customized further to suit the perfor-
mance characteristics of algorithms downstream, such as by adjusting 
the batch size or the parameters controlling the creation of dustbin 
batches (Supplementary Note 5). If the total size of a collection is small 
enough, the clustering/batching step may be skipped entirely and the 
entire collection treated as a single batch.

Inference of a compressive phylogeny. Users have the option to pro-
vide a custom tree generated by an accurate inference method such as 
RAxML55. However, in most practical scenarios, such trees are not avail-
able, and MiniPhy then uses Attotree (https://github.com/karel-brinda/
attotree/), an efficient re-implementation of the Mashtree algorithm33, 
to generate a compressive phylogeny through sketching. Both Mash-
tree and Attotree use Mash56 to estimate, using the MinHash sketching 
technique57 and a simple evolutionary model58, the evolutionary dis-
tances between all pairs of genomes. This is followed by the inference 
of a compressive phylogeny using the Neighbor-Joining algorithm59, 
as implemented in QuickTree60. Finally, MiniPhy post-processes 
the obtained tree using standard tree-transformation procedures 
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implemented in the ETE3 library61, involving tree standardization, set-
ting a midpoint outgroup, ladderization and naming the internal nodes.

MiniPhy. This is a central package for phylogenetic compression, 
including support for batching, and for calculating the associated 
statistics (see below). MiniPhy (https://github.com/karel-brinda/
miniphy/) is implemented as a Snakemake62 pipeline, offering three 
protocols for phylogenetic compression: (1) compression of assemblies 
based on left-to-right reordering; (2) compression of de Bruijn graphs 
represented by simplitigs28,53,54 based on left-to-right reordering; and 
(3) compression of de Bruijn graphs through bottom-up k-mer propa-
gation using ProPhyle28,29.

In the third protocol, k-mer propagation is executed recursively in 
a bottom-up manner: at each internal node, the k-mer sets of the child 
nodes are loaded, their intersection computed, stored at the node, the 
intersection subtracted from the child nodes, and all three k-mer sets 
saved in the form of simplitigs28,53,54; ProphAsm53 performs all these 
operations. This process results in a progressive reduction of the k-mer 
content within the phylogeny in a lossless manner28.

The output of each of the three protocols is a TAR file containing 
text files in their phylogenetic order, created from the corresponding 
list of files using the following command:

tar cvf - -C $(dirname {input.list}) -T {input.list}  
--dereference

For assemblies, these text files are the original assembly FASTA 
files, converted by SeqTK63 to the single-line format with all nucleo-
tides in uppercase (‘seqtk seq -U {input.fa}’). For simplitigs, the 
text files are end-of-line-delimited lists of simplitigs in the order as 
computed by ProphAsm, obtained from its output using the command 
‘seqtk seq {input.fa} | grep -v \>’. The resulting TAR file is 
then compressed using XZ (‘xz -9 -T1’; see section ‘Calibration and 
evaluation of phylogenetic compression’), and the resulting .tar.xz 
file distributed to users or further recompressed or indexed by other 
low-level tools, while preserving the underlying order.

MiniPhy statistics. For each of the three implemented protocols, 
MiniPhy generates a comprehensive set of statistics to quantify the 
compressibility of the batch, including: (1) set (the size of the k-mer 
set computed from all nodes of the compressive phylogeny); (2) mul-
tiset (the size of the k-mer multiset computed as a union of k-mer sets 
from individual nodes); (3) sum_ns (the total number of sequences); 
(4) sum_cl (the total sequence length); (5) recs (the number of records 
corresponding to individual nodes); and (6) xz_size (the size of the TAR 
file after XZ compression). The sizes of k-mer sets and multisets are 
determined from k-mer histograms computed by JellyFish 2 (v2.2.10)64 
using the commands:

jellyfish count --threads {threads} --canonical 
--mer-len 31 --size 20 M 
--output {jf_file} {input}

followed by

jellyfish histo --threads {threads} --high 1000000 
{jf_file}

The computed statistics are used for calculating additional 
compression-related metrics, such as the number of bits per distinct 
k-mer or kilobytes per genome.

Phylogeny-explained redundancy. By comparing the sizes of k-mer 
sets and multisets before and after reduction by k-mer propagation 
along a compressive phylogeny, it is possible to quantify the proportion 

of the k-mer signal that is explained by the phylogeny. This yields the 
so-called ‘phylogeny-explained k-mer redundancy’, quantifying the 
proportion of redundant occurrences of canonical k-mers that can be 
eliminated through k-mer propagation, of those potentially eliminable 
if the phylogeny perfectly explained the distribution of all the k-mers 
(that is, every k-mer occurring only once after propagation and thus 
being associated with a single entire subtree):

removed_redundancy = |multiset_preprop| − |multiset_postprop|
|multiset_preprop| − |set|

For collections comprising multiple batches, these variables refer 
to the global statistics, that is, the sizes of set and multiset unions 
across all batches.

MiniPhy-COBS. MiniPhy-COBS (https://github.com/leoisl/miniphy- 
cobs/) is a Snakemake62 pipeline designed to create phylogenetically 
compressed ClaBS COBS indexes36 (classical bit-sliced index) from 
assemblies already phylogenetically compressed by MiniPhy. ClaBS is 
a variant of COBS analogous to the original BIGSIdata structure17, using 
Bloom filters of the same size; this property is important for ensuring 
that the order of Bloom filters is preserved and that the neighboring 
Bloom filters are mutually compressible (Supplementary Note 4).  
The workflow for each batch involves three main steps:

	1.	 Renaming input assemblies to align their lexicographic and 
phylogenetic orders within each batch

	2.	 Constructing COBS ClaBS indexes with:
�cobs classic-construct -T 8 {batch} {output}.
cobs_classic

	3.	 Compressing the obtained indexes using:
�xz -9 -T1 -e --lzma2=preset=9,dict=1500MiB, 
nice=250

Updated ProPhyle. To simplify the integration with MiniPhy for 
bottom-up k-mer propagation, a new version of ProPhyle28,29 was 
released (v0.3.3.1; https://github.com/prophyle/prophyle/). The main 
improvement compared to previous versions includes the possibility 
to stop after k-mer propagation, without proceeding to the construc-
tion of an FM-index, as such an index is unnecessary for phylogenetic 
compression using MiniPhy. The new version of ProPhyle is provided in 
the form of a GitHub release (https://github.com/prophyle/prophyle/
releases/) and pre-built packages on Bioconda65.

Acquisition of the test collections
An overview of the five test collections is provided in Supplementary 
Note 2, and their basic characteristics, including the original file size, 
number of samples, species count and the number of distinct k-mers, 
are provided in Supplementary Table 1.

GISP. The GISP collection was obtained from GitHub repository 
available at https://github.com/c2-d2/rase-db-ngonorrhoeae-gisp/ 
(version 04a132c)52. The assemblies (n = 1,102) were obtained from the 
‘isolates/contigs’ subdirectory of the GitHub repository (containing the 
original genomes including the plasmids), and the associated RAxML 
phylogenetic tree was downloaded from the ‘tree/’ subdirectory of  
the same repository. The original data had originally been analyzed  
in ref. 66 and provided for download on Zenodo (https://doi.org/ 
10.5281/zenodo.2618836; 2019).

NCTC3k. The assemblies were obtained in GFF format from ftp://ftp.
sanger.ac.uk/pub/project/pathogens/NCTC3000 by

wget -m -np -nH --cut-dirs 3 –retr-symlinks 
ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000
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The obtained files were converted to the FASTA format by any-
2fasta (https://github.com/tseemann/any2fasta/, v0.4.2) parallelized 
by GNU Parallel67 and uploaded to Zenodo (https://doi.org/10.5281/
zenodo.4838517). The number of species in the collection was deter-
mined based on the data provided in the main Sanger/Public Health 
England assembly table for NCTC 3000 (https://www.sanger.ac.uk/
resources/downloads/bacteria/nctc/, retrieved on 14 September 2022). 
The HTML table was manually exported to XLSX and used to construct 
a translation table from NCTC accession numbers to correspond-
ing species. The accessions of the assemblies in our collection were 
then extracted from file names and translated to species, and the 
species were counted. Overall, this resulted in n = 1,065 assemblies of  
259 species.

SC2. The SARS-CoV-2 data were downloaded from the GISAID website 
(https://www.gisaid.org/, 18 May 2021) in the form of an assembly 
file (‘sequences_fasta_2021_05_18.tar.xz’, n = 1,593,858) and a 
Sarscov2phylo phylogeny (https://doi.org/10.5281/zenodo.4089815, 
‘gisaid-hcov-19-phylogeny-2021-05-11.zip’, n = 590,952). After 
converting both files to the same set of identifiers and removing iso-
lates with missing data, we obtained n = 590,779 genome assemblies 
organized in a phylogenetic tree.

BIGSIdata. The BIGSI collection data17 were downloaded from the 
associated FTP server (http://ftp.ebi.ac.uk/pub/software/bigsi/nat_bio-
tech_2018/), including cleaned de Bruijn graphs, taxonomic informa-
tion and abundance reports computed using Kraken and Bracken26. The 
download was done using RSync in groups corresponding to individual 
EBI prefixes (for example, DRR000) by

rsync -avP --min-size=1 --exclude ‘*stats*‘ 
--exclude ‘*uncleaned*‘ --exclude ‘*bloom*‘ 
--exclude ‘*log*‘ 
rsync://ftp.ebi.ac.uk/pub/software/bigsi/
nat_biotech_2018/ctx/{prefix}

The prefixes were organized into 15 groups of at most 100 pre-
fixes each, and the groups were processed individually in succession 
on a research computing cluster, with a parallelization using Slurm 
and jobs deployed using Snakemake62 (between 1 August 2020 and 15 
September 2020). From the downloaded McCortex files, unitigs were 
extracted using McCortex:

bzcat -f {input} | mccortex31 unitigs -m 3G -

Only those graphs with an uncorrupted McCortex file, Bracken 
information available, unitigs of total length ≥2 kbp with ≤15 million 
distinct k-mers and with no file system error encountered were used 
in the subsequent processing. This resulted in n = 425,160 de Bruijn 
graphs (of the original n = 463,331 genomes from the FTP or n = 447,833 
genomes reported in ref. 17).

661k. The 661k collection was downloaded in March 2021 from the 
official FTP repository16, using RSync by

rsync -avp rsync://ftp.ebi.ac.uk/pub/databases/
ENA2018-bacteria-661k/Assemblies/{pref}

The command was run for individual prefixes ranging from 000 
to 661, which resulted in n = 661,405 .fa.gz files.

Calibration and evaluation of phylogenetic compression
Calibration of XZ as a low-level tool for phylogenetic compres-
sion. The compression performance of GZip, BZip2 and XZ was evalu-
ated using the GISP collection, converted to the single-line FASTA 

format and with genomes sorted from left to right according to the 
Mashtree phylogeny (Extended Data Fig. 3). For each compressor, the 
compression was performed with a range of presets and always with 
a single thread. To evaluate the compression performance with large 
resources available, two additional manually tuned modes with larger 
dictionaries, denoted by ‘M’ and ‘MM’, were added to the XZ benchmark, 
corresponding to the parameters

--lzma2=preset=9,dict=512MiB

and

--lzma2=preset=9,dict=1500MiB,nice=250

respectively.

To evaluate the impact of different line lengths on the compres-
sion, the source FASTA was reformatted for different lengths using 
SeqTK63 and compressed using XZ by

seqtk seq -l {line_length} | xz -9 -T1

Comparison of scaling modes. The SC2 collection was provided in the 
left-to-right order according to Sarscov2phylo phylogeny (Extended 
Data Fig. 4). The genomes were progressively uniformly subsampled, 
stored as end-of-line-separated lists of sequences (without sequence 
headers), and then compressed using individual compressors, namely 
(1) XZ: ‘xz -9 -T1’, (2) BZip2: ‘bzip2 --best’, (3) GZip: ‘gzip -9’ 
and (4) Re-Pair68,69 (https://github.com/rwanwork/Re-Pair/; version  
as of 26 October 2021):

repair -v -I {inp_seqs}; tar cf {inp_seqs}.tar 
{inp_seqs}.prel {inp_seqs}.seq

As Re-Pair did not provide sufficient scalability for the entire SC2 
dataset and the implementation suffered from various bugs, the Re-Pair 
sub-experiment was limited only to n ≤ 70,000, the integrity of the 
output files always verified via their decompression and line counting, 
and all archives lacking integrity were discarded from the subsequent 
analysis.

The scalability comparisons for the NCTC3k and GISP collec-
tions were performed analogically, but using MiniPhy (commit 
‘41976c7’) and with sequence headers preserved. The order of all 
assemblies was first randomized by ‘sort -R’ and the individual 
sub-samplings for compression then generated as prefixes of this 
randomized list. The size comparisons were made based on the .tar.
xz output file of the pipeline, as well as additional files obtained via 
their recompression by GZip and BZip2 with the same parameters 
as above.

Order comparison. The SC2 collection was put into three different 
orderings: the original ordering (corresponding to the lexicographi-
cal ordering by sequence names), the left-to-right ordering of the 
phylogeny and a randomized order (Extended Data Fig. 5). In all cases, 
a custom Python script using BioPython70 was used to order the FASTA 
file and remove sequence names, and its output was compressed by the 
XZ compressor using one thread and the best preset (‘xz -T1 -9’). 
The comparisons for GISP and NCTC3k were performed analogically, 
but with sequence headers preserved.

Summary of MiniPhy calibration. XZ with the parameters ‘xz -9 -T1’  
was chosen as the default compression procedure for MiniPhy, 
and Mashtree33 or its reimplementation Attotree (https://github.
com/karel-brinda/attotree/) as the default method for inferring 
compressive phylogenies. These choices were done based on 
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the observations that the most popular method, GZip, always 
performed poorly for bacteria, although provided a moderate 
compression performance for viruses. On the other hand, XZ 
achieved steep compression curves for low-diversity collections, 
with compression ratio improving by one order per one order 
increase of the number of genomes, for both viruses and bacteria. 
NCTC3k as a high-diversity collection was weakly compressible 
even with the best approaches (less than one order of magnitude 
of compression after a three orders-of-magnitude increase in the 
number of genomes). One of the best available (but still highly 
experimental) grammar-based compressors, Re-Pair68,69, achieved 
a similar asymptotic behavior as XZ, indicative of the potential of 
grammar compressors for phylogenetic compression to provide 
random access, but its usability remains experimental. Phylo-
genetic reordering boosted compression substantially for both 
low-diversity and high-diversity collections (reduction in size 
between 38% and 67% compared to random orders). Finally, com-
pressive phylogenies computed using Mashtree33 provided nearly 
equal compression performance as an accurate approach using 
RaxML55.

Phylogenetic compression of the BIGSIdata collection of de 
Bruijn graphs
Clustering and batching. For every sample, the outputs of Kraken 
and Bracken26 were extracted from the downloaded data as provided 
in the online FTP repository (https://ftp.ebi.ac.uk/pub/software/
bigsi/nat_biotech_2018/ctx/) in the Bracken files (‘{accession}.
ctx_braken.report’) as the previously identified most prevalent 
species (corresponding to the row with the highest value of the ‘frac-
tion_total_reads’ column). Clustering and batching then pro-
ceeded as depicted in Extended Data Fig. 1 and further commented in 
Supplementary Note 5, with genomes being sorted according to the 
number of k-mers before their partitioning into batches. Overall, the 
genomes of the 1,443 identified species (clusters) were partitioned 
into 568 regular batches and 6 dustbin batches, resulting in a total 
of 574 batches.

Phylogenetic compression. Phylogenetic compression was per-
formed twice, with slightly different workflows.

First, phylogenetic compression proceeded manually, via a 
workflow whose modified version was later implemented in Mini-
Phy. For individual batches, compressive phylogenies were com-
puted using Mashtree33 with the default parameters. The resulting 
trees and McCortex unitig files were then used as input for Pro-
Phyle (v0.3.3.0) to propagate k-mers along the phylogenies, com-
pute simplitigs28,53,54 and merge the output FASTA files into a single  
one by

prophyle index -k 31 -A -g {dir_genomes} {tree} 
{batch_name}

The resulting FASTA files produced by ProPhyle (called ‘index.
fa’) were converted into the single-line format using SeqTK63 and 
compressed using XZ by

seqtk seq {prophyle_index_fa} | xz -9 -T8

The resulting files occupied 74.4 GB and were deposited on 
Zenodo (https://doi.org/10.5281/zenodo.4086456 and https://doi.
org/10.5281/zenodo.4087330). The correctness of the whole approach 
was validated using a dedicated Python package for decompression 
(see below); the k-mer counts in the decompressed data (obtained 
by kc-c3, https://github.com/lh3/kmer-cnt/, commit ‘e257471’) were 
compared to those obtained from the original McCortex files (from 
the total length and count of unitigs). All k-mer counts were equal, 

with the exception of four samples with from 17 to 26 more reported 
k-mers after decompression.

Second, an analogical version of the propagated simplitig files, 
but without sequence headers and with compression using a single 
thread only, was later created using the MiniPhy pipeline and resulted 
in files occupying in total 52.3 GB, which were subsequently deposited 
on Zenodo (https://doi.org/10.5281/zenodo.5555253).

Decompression of BIGSIdata de Bruijn graphs. To decompress 
de Bruijn graphs from the files obtained by k-mer propagation, 
all k-mers along all root-to-leaf paths need to be collected. We 
implemented this specifically for BIGSIdata in a dedicated Python 
package provided in GitHub (https://github.com/karel-brinda/
phylogenetic-compression-supplement/). The program downloads 
individual data files from Zenodo from the accessions above (the 
first version of the dataset) and reconstructs the original k-mer 
sets using the following procedure. First, it decompresses the XZ 
file of a given batch, splits it according to files corresponding to 
individual nodes of the compressive phylogeny, recompresses 
individual nodes using GZip parallelized by GNU Parallel67, and for 
all leaves (genomes) it reconstructs the corresponding k-mer sets 
by merging all GZip files along the corresponding root-to-leaf paths 
using the Unix cat command. From the obtained output FASTA files, 
de Bruijn graphs can be easily reconstructed by standard tools such 
as BCALM2 (ref. 71).

Comparison to the original compression protocol. As the samples 
in our BIGSIdata collection do not fully correspond to the data that 
were used in the original publication of BIGSI17, we recalculated the 
size statistics of the published McCortex files of our graphs based 
on the FTP list-off files as provided within individual subdirectories 
of http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ (as of  
27 August 2021). These were downloaded per individual prefix direc-
tories recursively using wget by

wget -nv -e robots=off -np -r -A .html 
http://ftp.ebi.ac.uk/pub/software/bigsi/
nat_biotech_2018/ctx/{prefix}/

The corresponding parallelized Snakemake pipeline was run on a 
desktop computer. This resulted in a table containing 484,463 files, of 
which 162,645 were compressed using BZip2. The individual file records 
were compared with the list of accessions of files that were previously 
retrieved and sorted in our BIGSIdata collection, and the volume of the 
source graphs on FTP calculated to be 16.7 TB.

Comparison to Metagraph. The size of the phylogenetically com-
pressed BIGSIdata collection was compared to the size of an analogous 
Metagraph index from the original paper37, based on the statistics 
in Table 1 and Supplementary Table 1 therein (the Sequence Read 
Archive-Microbe collection): n = 446,506 indexed datasets, 39.5 G 
canonical k-mers (with the same k-mer size, k = 31) and the size of the 
annotated de Bruijn graph being 291 GB (graph 30 GB + annotations 
261 GB). This index was constructed from the same datasets as those 
in the original BIGSI paper17 but using a slightly different computa-
tional methodology. Consequently, the index of Metagraph contained 
approximately 4% fewer distinct canonical k-mers (k = 31) compared 
to BIGSIdata as used in this paper. To compare the two compression 
approaches (MiniPhy with bottom-up k-mer propagation and XZ as 
a low-level tool versus Metagraph), both applied to the similar but 
different input data, we used the number of bits per distinct k-mer 
as the statistic for comparison, which was found to be 10.2 and 58.9, 
respectively. Therefore, the MiniPhy compression was more efficient 
by an estimated factor of 5.78. We note that phylogenetic compres-
sion could be directly embedded into Metagraph (by imposing the 
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phylogenetic order of columns during index construction), which may 
help to further reduce its index size.

Phylogenetic compression of the 661k assembly collection
Clustering and batching. Species clusters were identified based  
on the most prevalent species in the sample as identified using Kraken 2 
and Bracken26 from the original raw-read data; that is, based on the ‘V2’ 
column in the ‘File1_full_krakenbracken.txt’ file of the supple-
mentary materials of ref. 16. The creation of the dustbin pseudo-cluster 
and formation of individual batches proceeded by the steps docu-
mented in Extended Data Fig. 1 and as later implemented directly 
within MiniPhy, with genomes pre-sorted lexicographically according 
to ENA accessions.

Phylogenetic compression using MiniPhy. The obtained batches 
were compressed using the MiniPhy pipeline as described above; that 
is, compressive phylogenies were computed using Mashtree33 and 
used for (1) left-to-right reordering of the assemblies, (2) left-to-right 
reordering of simplitigs28,53,54 of the corresponding de Bruijn graphs, 
and (3) bottom-up k-mer propagation and simplitig computation by 
ProPhyle; while in all cases storing the simplitigs and assemblies as 
text and FASTA files, respectively, followed by a compression by ‘xz -9 
-T1’. The compressed assemblies were deposited on Zenodo (https://
doi.org/10.5281/zenodo.4602622).

Calculations of the statistics. All the statistics used in the plots and 
tables were calculated based on the numbers obtained from MiniPhy. 
Additionally, the total number of k-mers was calculated using JellyFish64 
(v.2.2.10) by

jellyfish count --mer-len 31 --size 200G --threads 32 
--output kmer_counting.jf --out-counter-len=1 
--canonical

which resulted in 44,349,827,744 distinct k-mers (28,706,296,898 
unique k-mers) for the 661k collection and in 35,524,194,027 dis-
tinct k-mers (22,904,412,202 unique k-mers) for the 661k-HQ col-
lection (as described below). The files uploaded to Zenodo (https://
doi.org/10.5281/zenodo.4602622) are higher by approximately 
0.2 GB (approximately 0.7% of the total size) compared to the val-
ues in Supplementary Table 3 as the Zenodo submission was done 
with an older version of compressive phylogenies without their  
post-processing.

Recompression using MBGC. Individual phylogenetically com-
pressed batches from the previous step were converted to single 
FASTA files by ‘tar -xOvf {input.xz}’ and then compressed using 
MBGC18 (v.1.2.1) with eight threads and the maximum compression 
level by

mbgc -i {input.fa} -c 3 -t 8 {output.mbgc}

Compression in the lexicographic order. Data in the ENA and other 
similar repositories have identifiers assigned in the order in which 
they are uploaded; individual uploads typically proceed by upload-
ing entire projects, and these typically involve phylogenetically very 
close genomes. For instance, genomes from a study investigating a 
hospital outbreak often occupy a range of accessions. Therefore, 
lexicographically sorted genomes from the ENA may be used as 
an approximation of phylogenetic compression. To compare the 
compressibility of the 661k collection in the ENA accession lexico-
graphic order to the full phylogenetic compression, we streamed 
the genomes from the main collection file provided on http://ftp.
ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661_assemblies.
tar, decompressed them on the fly, converted them to the one-line 

FASTA format using SeqTK63 and compressed them using XZ with 
32 threads by

pv 661_assemblies.tar | tar -xOf - | gunzip -c | 
seqtk seq | xz -9 -T32

Phylogenetic compression of the 661k/661k-HQ k-mer indexes
The 661k-HQ collection. To reduce biases in k-mer matching, a 
high-quality variant of the 661k collection, called 661k-HQ, was con-
structed from the 661k collection by excluding genomes that had not 
passed quality control in the original study16 (3.24% of the genomes). 
For simplicity, the batches and genome orders in 661k-HQ were kept 
the same as in 661k.

Phylogenetic compression of the 661k/661k-HQ COBS indexes. 
COBS indexes for the 661k and 661k-HQ collection were constructed 
per batch using the MiniPhy-COBS pipeline (see ‘MiniPhy-COBS’ above), 
which produces the ClaBS variant of the index with all Bloom filters of 
the same size sorted in a left-to-right order according to the phylogeny, 
and compresses them using XZ.

Comparisons to the compact COBS indexes. The compact vari-
ant of the COBS index (default in COBS), based on adaptive adjust-
ments of Bloom filter sizes through subindexes of different heights, 
was used as a baseline in our comparisons. For the 661k collection, 
we used the original index as provided (http://ftp.ebi.ac.uk/pub/
databases/ENA2018-bacteria-661k/661k.cobs_compact; retrieved 
on 8 September, 937 GB). For building a COBS index for 661k-HQ, we 
used the same construction protocol as in ref. 16. Both indexes were 
then compressed on a highly performant server by XZ using 32 cores 
(‘xz -9 -T32’).

All of the obtained data points are provided in Supplementary 
Table 4.

Phylign pipeline for alignment against all pre-2019 bacteria 
from the ENA
Overview. The Phylign pipeline (https://github.com/karel-brinda/
phylign/) uses phylogenetically compressed assemblies (661k) and 
COBS indexes (661k-HQ) as described above to align queries against 
the entire 661k-HQ collection in a fashion similar to BLAST (Sup-
plementary Note 6). The search procedure consists of two phases: 
matching the queries against the k-mer indexes using COBS36 
to identify the database’s most similar genomes for each query, 
followed by an alignment of the queries to their best-matching 
genomes using Minimap2 (ref. 40). Phylign is developed as a Snake-
make62 pipeline, using Bioconda65 for an automatic software man-
agement and the standard Snakemake resource management62 to 
control the CPU core assignments and limit RAM usage according 
to user-specified parameters. Upon its first execution, Phylign 
downloads its phylogenetically compressed reference database 
from the Internet (102 GB), consisting of 29.2 GB of assemblies and 
72.8 GB of COBS indexes.

Matching. The matching step involves k-mer matching of all user 
queries against the entire 661k-HQ database using a modified ver-
sion of COBS (v0.3, see below), based on the principle that the num-
ber of k-mer matches between a genome and a query correlates with 
the alignment score72. Each phylogenetically compressed COBS 
index is decompressed in memory and queried for the input user 
sequences, reporting all matches between the queries and genomes 
in the current batch with a sufficient (user-specified) proportion 
of matching k-mers. The computed matches are then aggregated 
across all batches and, for each query, only a (user-specified) num-
ber of best matches, plus ties, are retained and passed to the sub-
sequent alignment step. Matching is parallelized by Snakemake62, 
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with the number of threads for each COBS instance adjusted based 
on batch size.

Alignment. For each batch independently and fully in parallel, 
Phylign then iterates over the phylogenetically compressed genome 
assemblies, and if a given genome has at least one match passed from 
the matching phase, it builds on the fly, in memory, a new Minimap2 
(v2.24)40 instance for this genome and aligns all relevant queries to 
this genome, while saving Minimap2 outputs in a batch-specific 
output file. Once all batches are processed, the resulting align-
ments are aggregated and provided to the user in a modified  
SAM format73.

Performance characteristics. The total matching time is primarily 
driven by the time complexity of COBS, with decompression account-
ing for less than 2 CPU hours (Extended Data Fig. 9). In the alignment 
step, decompression requires less than 1.5 CPU hours (Extended Data 
Fig. 9), and the remainder of the time is primarily driven by the time 
to create a new Minimap2 instance (estimated 0.3 CPU seconds per 
instance in the current implementation). If the queries are long and 
Minimap2 is used with a sensitive preset, the actual Minimap2 align-
ment time becomes the main time component (for example, in the 
plasmid experiment in Supplementary Table 6).

Updated COBS. To integrate COBS into Phylign, new versions of 
COBS36 were created (v0.2, v0.3; https://github.com/iqbal-lab-org/
cobs/). The updates include support for macOS, streaming of indexes 
into memory and multiple bug fixes. The new versions of COBS are pro-
vided in the form of GitHub releases (https://github.com/iqbal-lab-org/
cobs/releases/) and pre-built packages on Bioconda65.

Benchmarking of the decompression time. Decompression 
times were evaluated on the same desktop computer as the align-
ment experiments, separately for the phylogenetically compressed 
assemblies versus COBS indexes and for in-memory decompression  
(‘xzcat {file} > /dev/null’) versus on-disk decompression  
(‘xzcat {file} > {tmpfile}’), resulting in four experiments.  
Within each experiment, decompression was parallelized using GNU 
Parallel (‘parallel -L1 -v --progress’), with time measured  
using the GNU time command both for the whole experiment and for 
each batch in a given compressed representation.

Evaluating Phylign
Overview of the benchmarking procedure. The search using Phylign 
was evaluated on three datasets, representative of different query 
scenarios: a database of antibiotic resistance genes, a database of 
plasmids and an Oxford Nanopore sequencing experiment. In all cases, 
the search parameters—including the number of hits of interest, the 
COBS k-mer threshold and the Minimap preset—were tailored to each 
specific query type. The experiments were conducted on an iMac with a 
Quad-Core Intel CPU i7, 4.2 GHz with four physical (eight logical) cores 
and 42.9 GB (40 GiB) RAM.

Time measurements. The wall clock and CPU time were measured 
using GNU time and calculated as real and usr + sys, respectively. 
The measurements were done for the matching and alignment steps 
separately.

Memory measurements. We have not found any reliable way of meas-
uring peak memory consumption on macOS: both GNU time and the 
psutil Python library were substantially underestimating the memory 
footprint of our Snakemake pipeline. Therefore, we performed addi-
tional measurements on a Linux cluster using the SLURM job manager, 
using jobs allocated with a configuration similar to the parameters of 
our iMac computer. For ‘max_ram_gb’ set to 30 GB, we observed a peak 

memory consumption of 26.2 GB, thus by 12.7% lower compared to 
the specified maximum. Such a discrepancy is expected because the 
‘max_ram_gb’ parameter defines an upper bound for the Snakemake 
resource management62, representing the worst-case scenario for 
parallel job combinations.

Resistance genes—ARG-ANNOT. The resistance genes search was 
performed using the ARG-ANNOT database41 comprising 1,856 genes/
alleles, as provided on GitHub (https://github.com/katholt/srst2/
blob/master/data/ARGannot_r3.fasta/; retrieved on 24 July 2022). 
The search parameters were set to require a minimum of 50% match-
ing k-mers, with 1,000 best hits plus ties taken for every gene/allele 
query. Alignment was performed with the Minimap preset for short  
reads (‘sr’).

Plasmids—the EBI plasmid database. The list of EBI plasmids was 
downloaded from the associated EBI website (https://www.ebi.ac.uk/
genomes/plasmid.details.txt, retrieved on 3 April 2022), and individual 
plasmids were subsequently downloaded from the ENA using curl and 
GNU Parallel67. The search parameters were set to require at least 40% 
matching k-mers (the threshold previously used in ref. 17), with 1,000 
best hits plus ties taken for every plasmid. Alignment was performed 
with the Minimap preset for long, highly divergent sequences (‘asm20’).

Oxford Nanopore reads. The ERR9030361 experiment, comprising 
158,583 nanopore reads from an isolate of Mycobacterium tuber-
culosis, was downloaded from the Sequence Read Archive NCBI 
database. The search parameters were set to require at least 40% 
matching k-mers, with ten best hits plus ties taken for every read. 
Alignment was performed with the Minimap preset for nanopore 
reads (‘map-ont’).

Comparison to BIGSI. As we were unable to reproduce the origi-
nal plasmid search experiment17 with BIGSI on our iMac computer  
(due to the required database transfer of 1.43 TB over an unstable FTP 
connection), we used the values provided in the original publication17. 
To ensure a fair comparison, we focused on evaluating the total CPU 
time (sys + usr) and verified that our parallelization efficiency was 
close to the maximal one (680% of 800% possible achieved, based on 
the values in Supplementary Table 6).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The Zenodo depositions for the five phylogenetically compressed test 
collections are provided in the following table.

Dataset Compressed form Zenodo accession/URL

GISP Assemblies (XZ) https://doi.org/10.5281/zenodo.10070404

SC2 Assemblies (XZ) Available upon request (GISAID license).

NCTC3k Assemblies (XZ) https://doi.org/10.5281/zenodo.5533354

BIGSIdata De Bruijn graphs 
(simplitigs  
after k-mer 
propagation; XZ)

https://doi.org/10.5281/zenodo.5555253

661k

Assemblies (XZ) https://doi.org/10.5281/zenodo.4602622

Assemblies (MBGC) https://doi.org/10.5281/zenodo.6347064

k-mer index  
(COBS; XZ)

https://doi.org/10.5281/zenodo.7313926
https://doi.org/10.5281/zenodo.7313942
https://doi.org/10.5281/zenodo.7315499

661k-HQ k-mer index  
(COBS; XZ)

https://doi.org/10.5281/zenodo.6845083
https://doi.org/10.5281/zenodo.6849657
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Code availability
The GitHub repositories and Zenodo depositions for the developed/
modified software are provided in the following table.
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Extended Data Fig. 1 | Batching strategies for the 661k (a) and BIGSIdata (b) collections. Genomes are clustered by species, and clusters that are too small are placed 
into a common pseudo-cluster called a dustbin. The resulting clusters and the dustbin are then divided into size- and diversity-balanced batches. For more information 
on batching, see Methods and Supplementary Note 5.
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Extended Data Fig. 2 | Quantification of phylogeny-explained data 
redundancy in the five test collections. The plot depicts the percentage of  
data redundancy that can be explained by the compressive phylogenies in  
each of the five test collections. Explained redundancy is measured by bottom- 
up k-mer propagation along the phylogenies performed by ProPhyle and 
calculated as the proportion of duplicate k-mers removed by the propagation 
(k = 31, canonical; see Methods for the formula). A k-mer distribution perfectly 
explained by the associated compressive phylogeny (that is, all k-mers associated 
with complete subtrees) would result in 100% phylogeny-explained redundancy. 
The plot shows that for single-species batches (modeled by the GISP and  

SC2 collections), the majority of the signal can be explained by their compressive 
phylogenies, indicative of their extremely high phylogenetic compressibility  
(cf. Extended Data Fig. 4a, b). In contrast, high-diversity batches (modeled by the 
NCTC3k collection) have more irregularly distributed k-mer content due  
to horizontal gene transfer combined with sparse sampling, indicative of their 
lower compressibility (cf. Extended Data Fig. 4c). Large and diverse collections, 
such as 661k and BIGSIdata, thus exhibit a medium level of phylogenetically 
explained redundancies, with the level depending on the amount of noise  
(higher for BIGSIdata and lower for 661k, as also visible in Extended Data Fig. 7).
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Extended Data Fig. 3 | Calibration of XZ as a low-level tool for phylogenetic 
compression of assemblies. The comparison was performed using the 
assemblies from the GISP collection, with genomes sorted left-to-right according 
to the Mashtree phylogeny. In both plots, an asterisk denotes the mode selected 
for phylogenetic compression in MiniPhy. a) The plot shows the compression 
performance of XZ, GZip, and BZip2 in bits per bp as a function of compression 
presets (-1, -2, etc.) with single-line FASTA. Given the specific sizes of dictionaries 
and windows used in the individual algorithms and their presets, only XZ with a 
level ≥ 4 was capable of compressing bacterial genomes beyond the statistical 

entropy baseline (that is, approximately 2 bits per bp). M and MM denote 
additional, manually tuned compression modes of XZ with increased dictionary 
sizes (Methods), which slightly improved compression performance but 
substantially increased memory and CPU time and were thus not used in  
MiniPhy. b) The plot shows the impact of FASTA line length on compression 
performance. With single-line FASTA (denoted by Inf), the compressed size is 
reduced to 12% compared to the 40-bp-per-line version. The plot highlights the 
importance of pre-formatting FASTA data before using general compressors 
such as XZ.
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Extended Data Fig. 4 | Comparison of three contrasting compression scaling 
modes of microbial collections. The plots compare the scaling behavior of the 
XZ, GZip, BZip2, and Re-Pair compressors on the SC2 (a), GISP (b), and NCTC3k 
(c) collections, depicting the space per genome as a function of the number of 
jointly compressed genomes, progressively increased on logarithmic scales. 
The results highlight several key findings. First, XZ consistently outperforms the 
other compressors. Second, for viral genomes all four compressors are able  
to overcome the 2-bits-per-bp baseline thanks to their short genome length,  
but only XZ is able to compress beyond this limit for bacterial genomes 

(consistent with Extended Data Fig. 3a; the Re-Pair implementation used could 
not compress bacterial genomes due to their size). Third, Re-Pair compression 
can be nearly as effective as XZ for viruses, but its applicability to large 
datasets is limited by its scalability. Fourth, the compressibility of divergent 
bacteria is substantially limited even with the best compressors, with only a 
4× improvement in per-genome compression for NCTC3k (while the highly 
compressible SC2 and GISP collections show 171× and 105× improvements for the 
same number of genomes).
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Extended Data Fig. 5 | Impact of within-batch genome order on the 
compressibility of microbial collections. While a substantial part of the  
benefits of phylogenetic compression comes from organizing genomes into 
batches of phylogenetically related genomes, proper genome reordering  
within individual batches is also crucial for maximizing data compressibility.  

The plots demonstrate that the impact of within-batch reordering grows with the 
amount of diversity included (GISP vs. NCTC3k) and with the number of genomes 
(GISP vs. SC2). Accurate phylogenies inferred using RAxML provided a small 
compression benefit for assemblies over trees computed using Mashtree (GISP).
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Extended Data Fig. 6 | Compression trade-offs for the five test collections and 
for individual batches of the 661k collection. The plot illustrates the trade-off 
between the per-genome size after compression and the number of bits per 
distinct k-mer (k = 31, canonical). The larger points represent individual genome 
collections and correspond to values from Supplementary Table 3. The smaller 
points represent individual batches within the 661k collection, with colors 

indicating the number of genomes in each batch. Overall, the plot reveals the 
influence of genomic diversity on the resulting compression characteristics.  
The trade-off follows an L-shaped pattern, where compressing genome groups 
with high diversity leads to smaller space per k-mer but larger space per genome, 
and vice versa for genome groups with low diversity.
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Extended Data Fig. 7 | Distribution of the number of distinct k-mers in the top 
20 species in (a) the 661k and (b) BIGSIdata collections. For the 661k collection, 
colors represent the quality of the assemblies (LQ: low-quality, HQ: high-quality), 
as determined as part of the quality control in the original publication. For 

BIGSIdata, no quality control information is available. The numbers below the 
species name indicate the number of samples within each category. The plots 
were created for canonical 31-mers.
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Extended Data Fig. 8 | Proportions of top 10 species (their corresponding 
batches) in the 661k collection before and after phylogenetic compression. 
The plot depicts the proportions of the top 10 species, the Dustbin 
pseudo-cluster, and the remaining species grouped as Others, while comparing 
the following four quantitative characteristics: the number of genomes, their 
cumulative length, the size of the phylogenetically compressed assemblies, 
and the size of the phylogenetically compressed COBS indexes (for k = 31). 

Transitioning from the number of genomes to their cumulative length has only 
a minor impact on the proportions (corresponding to different mean genome 
lengths of individual species). However, the divergent genomes occupy a 
substantially higher proportion of the collection after compression. Moreover, 
despite genome assemblies and k-mer COBS indexes being fundamentally 
different genome representations (horizontal vs. vertical, respectively), the 
observed post-compression proportions in them were nearly identical.
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Extended Data Fig. 9 | Time required for decompressing the Phylign 661k-
HQ database. The wall clock and total CPU time required to decompress the 
Phylign 661k-HQ database, both from disk and in memory, were measured on 
an iMac desktop computer with 4 physical (8 logical) cores. The in-memory 

decompression process, which is implemented in Phylign, was completed under 
30 min. This duration represents only a fraction of the typical time required for 
search experiments (see Supplementary Table 6).
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