
Nature Methods | Volume 22 | April 2025 | 692–697 692

nature methods

Article https://doi.org/10.1038/s41592-025-02625-2

Efficient and robust search of microbial
genomes via phylogenetic compression

Karel Břinda    1,2  , Leandro Lima3, Simone Pignotti    2,4,
Natalia Quinones-Olvera    2, Kamil Salikhov4, Rayan Chikhi    5,
Gregory Kucherov    4, Zamin Iqbal    3,6 & Michael Baym    2 

Comprehensive collections approaching millions of sequenced genomes
have become central information sources in the life sciences. However,
the rapid growth of these collections has made it effectively impossible
to search these data using tools such as the Basic Local Alignment Search
Tool (BLAST) and its successors. Here, we present a technique called
phylogenetic compression, which uses evolutionary history to guide
compression and efficiently search large collections of microbial genomes
using existing algorithms and data structures. We show that, when applied
to modern diverse collections approaching millions of genomes, lossless
phylogenetic compression improves the compression ratios of assemblies,
de Bruijn graphs and k-mer indexes by one to two orders of magnitude.
Additionally, we develop a pipeline for a BLAST-like search over these
phylogeny-compressed reference data, and demonstrate it can align genes,
plasmids or entire sequencing experiments against all sequenced bacteria
until 2019 on ordinary desktop computers within a few hours. Phylogenetic
compression has broad applications in computational biology and may
provide a fundamental design principle for future genomics infrastructure.

Comprehensive collections of genomes have become an invaluable
resource for research across the life sciences. However, their expo-
nential growth, exceeding improvements in computation, makes their
storage, distribution and analysis increasingly cumbersome1. As a
consequence, traditional search approaches, such as BLAST2 and its
successors, are becoming less effective with the available reference
data, which poses a major challenge for organizations such as the
National Center for Biotechnology Information (NCBI) or European
Bioinformatics Institute (EBI) in maintaining the searchability of
their repositories.

The keys to achieving search scalability are compressive
approaches that aim to store and analyze genomes directly in the
compressed domain3,4. Genomic data have low fractal dimension
and entropy5, offering the possibility of efficient search algorithms5.
However, despite the progress in compression-related areas of

computer science4–15, it remains a practical challenge to compute
parsimonious compressed representations of the exponentially grow-
ing public genome collections.

Microbial collections are particularly difficult to compress due to
the huge number of genomes and their exceptional levels of genetic
diversity, which reflect the billions of years of evolution across the
domain. Even though substantial efforts have been made to construct
comprehensive collections of all sequenced microbial genomes, such
as the 661k assembly collection16 (661k pre-2019 bacteria) and the
BIGSIdata de Bruijn graph collection17 (448k de Bruijn graphs of all pre-
2017 bacterial and viral raw sequence), the resulting data archives and
indexes range from hundreds of gigabytes (661k) to tens of terabytes
(BIGSIdata). This scale exceeds the bandwidth, storage and data pro-
cessing capacities of most users, making local computation on these
data functionally impossible.

Received: 8 June 2023

Accepted: 12 February 2025

Published online: 9 April 2025

 Check for updates

1Inria, Irisa, Univ. Rennes, Rennes, France. 2Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. 3EMBL-EBI, Hinxton, UK.
4LIGM, CNRS, Univ. Gustave Eiffel, Marne-la-Vallée, France. 5Institut Pasteur, Univ. Paris Cité, G5 Sequence Bioinformatics, Paris, France. 6Milner Centre for
Evolution, University of Bath, Bath, UK.  e-mail: karel.brinda@inria.fr; baym@hms.harvard.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02625-2
http://orcid.org/0000-0003-0200-557X
http://orcid.org/0009-0003-3660-6960
http://orcid.org/0000-0002-4612-6819
http://orcid.org/0000-0003-1099-8735
http://orcid.org/0000-0001-5899-5424
http://orcid.org/0000-0001-8466-7547
http://orcid.org/0000-0003-1303-5598
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-025-02625-2&domain=pdf
mailto:karel.brinda@inria.fr
mailto:baym@hms.harvard.edu

Nature Methods | Volume 22 | April 2025 | 692–697 693

Article https://doi.org/10.1038/s41592-025-02625-2

This general scheme can be instantiated to individual protocols for
various data types as we show in Fig. 1c; for instance, a set of bacterial
assemblies can be phylogenetically compressed by XZ (the Lempel–
Ziv–Markov chain algorithm7, implemented in XZ Utils32) by a left-to-
right enumeration of the assemblies, with respect to the topology of
their compressive phylogeny obtained via sketching33.

We implemented phylogenetic compression protocols for assem-
blies, for de Bruijn graphs, and for k-mer indexes in a tool called MiniPhy
(Minimization via Phylogenetic compression; https://github.com/
karel-brinda/miniphy/). To cluster input genomes, MiniPhy builds upon
the empirical observation that microbial genomes in public reposito-
ries tend to form clusters corresponding to individual species34, and
species for individual genomes can be identified rapidly via metagen-
omic classification35 by the Kraken suite26 (Fig. 1b and Methods). As
some of the resulting clusters may be too large or too small, and thus
unbalancing downstream parallelization, it further redistributes the
clustered genomes into size-balanced and diversity-balanced batches
(Methods and Extended Data Fig. 1). This batching enables compres-
sion and search in a constant time (using one node per batch on a
cluster) or linear time (using a single machine; Methods). For every
batch, a compressive phylogeny—either provided by the user or com-
puted automatically using Mashtree33/Attotree (https://github.com/
karel-brinda/attotree/; Methods)—is then used for data reordering
(Methods). Finally, the obtained reordered data are compressed per
batch using XZ with particularly optimized parameters (Methods),
and possibly further recompressed or indexed using some general or
specialized low-level tool, such as MBGC18 or COBS36 (Methods).

Improved compression of large genome collections
We evaluated phylogenetic compression using five microbial collec-
tions, selected as representatives of the compression-related trade-offs
between characteristics including data quality, genetic diversity,
genome size and collection size (GISP, NCTC3k, SC2, 661k and BIGSI-
data; Methods, Supplementary Note 2 and Supplementary Table 1).
We quantified the distribution of their underlying phylogenetic signal
(Methods, Supplementary Table 2 and Extended Data Fig. 2), used
them to calibrate the individual steps of the phylogenetic compres-
sion workflow (Methods and Extended Data Figs. 3–5) and evaluated
the resulting performance, trade-offs and extremal characteristics
(Methods, Supplementary Table 3 and Extended Data Fig. 6). As one
extreme, we found that 591,000 severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) genomes can be phylogenetically com-
pressed using XZ to only 18.1 bytes per genome (Methods, Supplemen-
tary Table 3 and Extended Data Figs. 4 and 6), resulting in a file size of
10.7 Mb (13.2 times more compressed than GZip). A summary detailing
the sensitivity/stability of performance to various factors is provided
in Supplementary Note 3.

We found that phylogenetic compression improved the com-
pression of genome assembly collections that comprise hundreds
of thousands of isolates of over 1,000 species by more than an order
of magnitude compared to the state-of-the-art approach (Fig. 2a and
Supplementary Table 3). Specialized high-efficiency compressors
such as MBGC18 are not directly applicable to highly diverse collec-
tions; therefore, the compression protocols deployed in practice for
extremely large and diverse collections are still based on the standard
GZip, such as the 661k collection, containing all bacteria pre-2019
from the European Nucleotide Archive (ENA)16 (n = 661,405; 805 GB).
Here, MiniPhy recompressed the collection to 29.0 GB (27.8 times the
improvement; 43.8 kB per genome, 0.0898 bits per base pair, 5.23 bits
per distinct k-mer) using XZ as a low-level tool, and further to 20.7 GB
(38.9 times the improvement; 31.3 kB per genome, 0.0642 bits per base
pair, 3.74 bits per distinct k-mer) when combined with MBGC18 that also
accounts for reverse complements (Fig. 2a, Supplementary Table 3 and
Methods). Additionally, we found that the lexicographically ordered
ENA datasets, as being partially phylogenetically ordered, can serve

We reasoned that the redundancies among microbial genomes are
efficiently predictable, as they reflect underlying processes that cre-
ated the collection: evolution and sampling. While genomes in nature
can accumulate substantial diversity through vertical and horizontal
mutational processes, this process is functionally sparse, and at the
same time subjected to selective pressures and drift that limit their
overall entropy. The amount of sequenced diversity is further limited
by selective biases due to culture and research or clinical interests,
resulting in sequencing efforts being predominantly focused on nar-
row subparts of the tree of life, associated with model organisms and
human pathogens16. Importantly, such subtrees have been shown to be
efficiently compressible when considered in isolation, as low-diversity
groups of oversampled phylogenetically related genomes, such as iso-
lates of the same species under epidemiological surveillance18,19. This
suggests that the compression of comprehensive collections could be
informed by their evolutionary history, reducing the complex problem
of general genome compression to the more tractable problem of local
compression of phylogenetically grouped and ordered genomes.

Phylogenetic relatedness is effective at estimating the similarity
and compressibility of microbial genomes and their data representa-
tions. The closer two genomes are phylogenetically, the closer they are
likely to be in terms of mathematical similarity measures, such as the
edit distance or k-mer distances20, and thus also more compressible.
Importantly, this principle holds not only for genomes, but also for de
Bruijn graphs and many k-mer indexes. We reasoned that phylogenetic
trees could be embedded into computational schemes to group similar
data together, as a preprocessing step for boosting local compressibil-
ity of data. The well-known Burrows–Wheeler transform21 has a similar
purpose in a different context and similar ideas have been used for read
and alignment compression22–25. Other related ideas have previously
been used for scaling up metagenomic classification using taxonomic
trees26–29 and search in protein databases30,31.

At present, the public version of BLAST is frequently used to iden-
tify the species of a given sequence by comparing it to exemplars, but
it is practically impossible to align against all sequenced bacteria.
Despite the increasing number of bacterial assemblies available in the
NCBI repositories, the searchable fraction of bacteria is exponentially
decreasing over time (Fig. 1a and Supplementary Note 1). This limits our
ability to study bacteria in the context of their known diversity, as the
gene content of different strains can vary substantially, and important
hits can be missed due to the database being unrepresentative.

Here, we present a solution to the problem of searching vast librar-
ies of microbial genomes: ‘phylogenetic compression’, a technique
for an evolutionary-guided compression of arbitrarily sized genome
collections. We show that the underlying evolutionary structure of
microorganisms can be efficiently approximated and used as a guide
for existing compression and indexing tools. Phylogenetic compres-
sion can then be applied to collections of assemblies, de Bruijn graphs
and k-mer indexes, and run in parallel for efficient processing. The
resulting compression yields benefits ranging from a quicker download
(reducing Internet bandwidth and storage costs), to efficient search
on personal computers. We show this by implementing BLAST-like
search on all sequenced pre-2019 bacterial isolates, which allow us to
align genes, plasmids and sequencing reads on an ordinary laptop or
desktop computer within a few hours, a task that was infeasible with
previous techniques.

Results
We developed a technique called phylogenetic compression for evo-
lutionarily informed compression and search of microbial collections
(Fig. 1; https://brinda.eu/mof/). Phylogenetic compression combines
four ingredients (Fig. 1b): (1) clustering of samples into ‘phylogeneti-
cally related groups’, followed by (2) inference of a ‘compressive phy-
logeny’ that acts as a template for (3) ‘data reordering’, before (4) the
application of a calibrated ‘low-level compressor/indexer’ (Methods).

http://www.nature.com/naturemethods
https://github.com/karel-brinda/miniphy
https://github.com/karel-brinda/miniphy
https://github.com/karel-brinda/attotree/
https://github.com/karel-brinda/attotree/
https://brinda.eu/mof

Nature Methods | Volume 22 | April 2025 | 692–697 694

Article https://doi.org/10.1038/s41592-025-02625-2

as an approximation of phylogenetic compression, with compres-
sion performance only degraded by a factor of 4.17 compared to full
phylogenetic compression (Supplementary Table 3 and Methods).

We then studied de Bruijn graphs, a common genome represen-
tation directly applicable to raw-read data17,37, and found that phy-
logenetic compression can improve state-of-the-art approaches by
one to two orders of magnitude (Fig. 2a, Supplementary Table 3 and
Methods). As standard and colored de Bruijn graphs lack methods for
joint compression at the scale of millions of genomes and thousands of
species, single graphs are often distributed individually38. For instance,
the graphs of the BIGSIdata collection17, comprising all viral and bac-
terial genomes from pre-2017 ENA (n = 447,833), are provided in an

online repository in the McCortex binary format39 and occupy in total
>16.7 TB (Methods). Here, we retrieved n = 425,160 graphs from the
Internet (94.5% of the original count; Methods) and performed loss-
less recompression using the MiniPhy methodology, with a bottom-up
propagation of the k-mer content, to 52.3 GB (319 times the improve-
ment; 123 kB per genome, 0.248 bits per base pair (in unitigs), 10.2 bits
per distinct k-mer; Fig. 2a, Supplementary Table 3 and Methods). Fur-
ther, as recent advances in de Bruijn graph indexing15 may lead to more
efficient storage protocols in the future, we also compared MiniPhy
to MetaGraph37, an optimized tool for indexing on high-performance
servers with a large amount of memory. Here, we found that MiniPhy
still provided an improvement of a factor of 5.78 (Methods).

Compression
XZ

b

SAMEA3431690
SAMEA3431689
SAMEA3431688
SAMEA3431687

c

(i)

(i)

(ii)

(ii)

(iii)

ccat gcatc gatc

Compression

Compaction
& orderingReduction

Compression

Ordering

Ordering

Index
construction Simplitigs

XZ

ccat

gcatc

gatc

Phylogeny
inference

Assemblies

ccat
gcatc
gatc

{cc,ca,
at}

{gc,ca,
at,tc}

{ga,at,
tc}

{cc,ca}

{at}

{gc,ca}

{tc}

{ga}

0

20

40

60

80

100

120

20
02

20
06

20
10

20
14

20
18

20
22

a

ǀ NCBI bacteria ǀ
ǀ BLAST NT ǀ

Year

at
cca
tc
gca
ga

SAMEA3165719

SAMEA1690482

SAMEA3432444

SAMEA3143533

Ordering

Input samples

Reduction

Reference genome

Space partitioning

Fig. 1 | Overview of phylogenetic compression and its applications to different
data types. a, Exponential decrease of data searchability over the past two
decades illustrated by the size of the BLAST NT database divided by the size
of the NCBI Bacterial Assembly database (Supplementary Note 1). b, The first
three stages of phylogenetic compression before the application of a low-level
compressor/indexer. (i) A given collection is partitioned into size-balanced and
diversity-balanced batches of phylogenetically related genomes (for example,
using metagenomic classification of the original reads). (ii) The input data are
reversibly reordered based on a compressive phylogeny, performed separately

for each batch. c, Examples of specific protocols for phylogenetic compression
of individual data types, performed separately for each batch. (i) Assemblies
are sorted from left to right according to the topology of the phylogeny,
and then compressed using a low-level compressor such as XZ7,32 or MBGC18.
(ii) For de Bruijn graphs, k-mers are propagated in a bottom-up fashion along
the phylogeny, and the resulting k-mer sets are compacted into simplitigs28,53,54,
which are then compressed using XZ. (iii) For BIGSI k-mer indexes, Bloom filters
(in columns) are ordered from left to right according to the phylogeny, and then
compressed using XZ.

http://www.nature.com/naturemethods

Nature Methods | Volume 22 | April 2025 | 692–697 695

Article https://doi.org/10.1038/s41592-025-02625-2

Phylogenetic compression can be applied to any genomic data
structure based on a genome-similarity-preserving representation
(Methods and Supplementary Note 4). We demonstrate this using
the Bitsliced Genomic Signature Index (BIGSI)17 (Fig. 1c(iii)), a k-mer
indexing method using an array of Bloom filters, which is widely used
for large-scale genotyping and presence/absence queries of genomic
elements16,17. Using the same data, batches and orders as inferred previ-
ously, we phylogenetically compressed the BIGSI indexes of the 661k
collection, computed using a modified version of COBS36 (Supple-
mentary Table 4 and Methods). Phylogenetic compression provided
8.51 times the overall improvement compared to the original index
(from 937 GB to 110 GB), making it finally usable on ordinary comput-
ers. After we further omitted the 3.24% of genomes that had not passed
quality control in the original study16 (the 661k-HQ collection; visual-
ized in Extended Data Fig. 7), the resulting phylogenetic compression
ratio improved to 12.3× (72.8 GB; Supplementary Table 4).

To better understand the impact of phylogenetic compression
across the tree of life, we analyzed the 661k MiniPhy batches of assem-
blies and COBS indexes, both before and after compression (Extended
Data Fig. 8). We found that although the top ten species constituted
nearly 80% of the genomic content, they occupied less than half of
the database space after compression for both genome representa-
tions (Extended Data Fig. 8). Conversely, the ‘dustbin’ batches, which
include genomes from sparsely sampled species, expanded to occupy a
proportion that was 9.4 times larger in the database after compression,
compared to their precompression proportion, again for both repre-
sentations (Extended Data Fig. 8). This consistent effect of compres-
sion on both assemblies and COBS indexes suggests that phylogenetic
compressibility adheres to the same principles, irrespective of the
specific genome representation used, with divergent genomes being
a major driver of the final size.

BLAST-like alignment to all bacteria on desktops in hours
To demonstrate the practical utility of phylogenetic compression, we
used it to implement BLAST-like search across all high-quality pre-2019
bacteria for standard desktop and laptop computers (Phylign; https://
github.com/karel-brinda/phylign/; Methods). For a given a set of que-
ries, Phylign first identifies for each query those genomes that match
best globally across the whole 661k-HQ collection, by proceeding via
progressive in-memory decompression and querying of individual
phylogenetically compressed COBS36 k-mer indexes (described above).
Subsequently, Phylign iterates over the phylogenetically compressed
genome assemblies (described above) and computes the correspond-
ing full alignments using on-the-fly instances of Minimap2 (Methods)40.
The choice of tools was arbitrary, and other programs or core data
structures could readily be used instead. The resulting requirements
amount to only 102 GB from disk (for the compressed COBS indexes
and assemblies: 159 kB per genome, 0.329 bits per base pair, 23.0 bits

per distinct k-mer; Supplementary Table 5) and 12 GB RAM, and Phylign
can thus be deployed on most modern laptop and desktop computers.

We first evaluated Phylign with 661k-HQ using three different types
of queries—resistance genes (the entire ARG-ANNOT database of resist-
ance genes41, n = 1,856), plasmids (EBI plasmid database, n = 2,826), and
a nanopore sequencing experiment (n = 158,583 reads), with results
available within 3.9, 11 and 4.3 h, respectively, on an iMac desktop
(Supplementary Table 6). Benchmarking against other tools was not
possible, as we were unable to find any tool capable of aligning que-
ries to 661k-HQ in a comparable setup. Therefore, we used the EBI
plasmid dataset to compare Phylign to BIGSI with its original database
of 447,833 genomes (which is essentially a subset of 661k-HQ with
1.43 times less genomes)17. We found that Phylign was over an order
of magnitude faster (Fig. 2b and Supplementary Table 6); the search
required 74.1 CPU hours and improved performance by a factor of
28.6× compared to the same BIGSI benchmark with its smaller database
(Fig. 2b and Supplementary Table 6), while providing the full align-
ments rather than presence/absence only (Fig. 2b). To our knowledge,
this is the first time that alignment to a collection of a comparable size
and diversity has been locally performed.

Discussion
It is hard to overstate the impact on bioinformatics of BLAST2, which
has allowed biologists across the world to handily and rapidly compare
their sequence of interest with essentially all known genomes—to the
extent that the tool name has become a verb. The web version provided
by NCBI/EBI is so standard that it is easy to overlook how representa-
tive or complete its database is. However, 24 years on, sequencing
data have far outstripping BLAST’s ability to keep up. Much work has
gone into approximate solutions15, but full alignment to the complete
corpus of bacterial genomes has remained effectively impossible.
We have addressed this problem and made substantial progress, via
phylogenetic compression, a highly efficient general technique using
evolutionary history of microorganisms to improve existing compres-
sive data structures and search algorithms by orders of magnitude.
More concretely, BLAST-like search of all microorganisms is now
possible, not just for NCBI/EBI, but for anyone on a personal laptop.
This has wide-ranging benefits, from an easy and rapid download of
large and diverse genome collections, to reductions in bandwidth
requirements, transmission/storage costs and computational time.

Elements of our approach and related techniques have been
previously used in other contexts. Reversible reordering to improve
compression forms the core of the Burrows–Wheeler transform21
and its associated indexes42–44, and it has also been used for read
compression22–25. Tree hierarchies have been applied in metagenomics
for both lossy27,45,46 and lossless28 reference data compression. Finally,
a divide-and-conquer methodology has been used to accelerate the
inference of species trees47. Our approach combines these ideas to

805 G

29.0 G 20.7 G52.3 G

16.7 T

0

0.2

0.4

0.6

0.8

1

0

6
12
18

BIGSIdata 661k

Standard protocol
MiniPhy–XZ

MiniPhy–MBGC

a

Te
ra

by
te

s

b

Phylign

BIGSI

0
500

1,0
00

1,5
00

2,0
00

Total CPU hours

Prese
nce/

ab
se

nce

Alig
nment

Yes

Yes Yes

No

Fig. 2 | Results of phylogenetic compression. a, Compression by MiniPhy of
the two comprehensive genome collections: BIGSI (425,160 de Bruijn graphs;
the standard compression is based on McCortex binary files) and 661k (661,405
bacterial assemblies; the standard protocol is based on GZip). For BIGSIdata,

MBGC is not included as it does not support simplitigs. b, Comparison of the
Phylign versus BIGSI methods on search of all plasmids from the EBI database.
For Phylign, the two segments correspond to the times of matching and
alignment, respectively.

http://www.nature.com/naturemethods
https://github.com/karel-brinda/phylign/
https://github.com/karel-brinda/phylign/

Nature Methods | Volume 22 | April 2025 | 692–697 696

Article https://doi.org/10.1038/s41592-025-02625-2

improve the scalability and portability of search and alignment in large
genome databases.

As with all forms of compression, our ability to reduce data is
fundamentally limited by the underlying entropy. For genome collec-
tions, this is not introduced solely by the underlying genetic signal,
but it is also tightly connected with the sequencing process and our
capacity to reconstruct genomes from sequencing reads. The noise in
the underlying k-mer histograms (Extended Data Fig. 7) suggests that
any method for compression or search will have to address noise in the
forms of contamination, missing regions and technological artifacts,
with legacy data posing a major challenge for both storage and analy-
sis. Future methods may choose to incorporate stricter filtering, and
as our experiments have demonstrated, this helps not only in reducing
data volume but also in improving the quality of search outputs; these
issues may be alleviated by innovative computational strategies, such
as taxonomic filters48 or sweep deconvolution49. Another limitation of
our approach is its reliance on phylogenetic trees as a backbone struc-
ture for explaining data redundancies. While this applies in regimes
where vertical descent predominates or where genetic descent is
well approximated by tree structure, in cases where it does not (for
example, within a eukaryotic species), the assumption of a phyloge-
netic tree may not yield substantial gains. In this case, future versions
may better use alternate graph structures to trees, such as ancestral
recombination graphs50.

In light of technological development, the benefits of phyloge-
netic compression will grow over time. Currently, only a fraction of the
world’s microbial diversity has been sequenced. However, as sequenc-
ing becomes more comprehensive, the tree of life will not change, thus
enhancing the relative advantage of phylogenetic compression. We
foresee its use ranging from mobile devices to large-scale distributed
cloud environments and anticipate promising applications in global
epidemiological surveillance51 and rapid diagnostics52. Overall, the
phylogenetic compression of data structures has broad applications
across computational biology and may represent a fundamental design
principle for future genomics infrastructure.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02625-2.

References
1.	 Stephens, Z. D. et al. Big data: astronomical or genomical?

PLoS Biol. 13, e1002195 (2015).
2.	 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.

Basic local alignment search tool. J. Mol. Biol. 215, 403–410
(1990).

3.	 Navarro, G. & Mäkinen, V. Compressed full-text indexes.
ACM Comput. Surv. 39, 2 (2007).

4.	 Loh, P. -R., Baym, M. & Berger, B. Compressive genomics.
Nat. Biotechnol. 30, 627–630 (2012).

5.	 Yu, Y. W., Daniels, N. M., Danko, D. C. & Berger, B. Entropy-
scaling search of massive biological data. Cell Syst. 1, 130–140
(2015).

6.	 Giancarlo, R., Scaturro, D. & Utro, F. Textual data compression in
computational biology: a synopsis. Bioinformatics 25, 1575–1586
(2009).

7.	 Salomon, D. & Motta, G. in Handbook of Data Compression,
329–441 (Springer, 2010).

8.	 Daniels, N. M. et al. Compressive genomics for protein databases.
Bioinformatics 29, i283–i290 (2013).

9.	 Deorowicz, S. & Grabowski, S. Data compression for sequencing
data. Algorithms Mol. Biol. 8, 25 (2013).

10.	 Giancarlo, R., Rombo, S. E. & Utro, F. Compressive biological
sequence analysis and archival in the era of high-throughput
sequencing technologies. Brief. Bioinform. https://doi.org/
10.1093/bib/bbt088 (2013).

11.	 Zhu, Z., Zhang, Y., Ji, Z., He, S. & Yang, X. High-throughput DNA
sequence data compression. Brief. Bioinform. 16, 1–15 (2015).

12.	 Hosseini, M., Pratas, D. & Pinho, A. J. A survey on data
compression methods for biological sequences. Information 7,
56 (2016).

13.	 Jayasankar, U., Thirumal, V. & Ponnurangam, D. A survey on data
compression techniques: from the perspective of data quality,
coding schemes, data type and applications. J. King Saud
University-Computer Information Sci. 33, 119–140 (2021).

14.	 Navarro, G. Indexing highly repetitive string collections, part I:
repetitiveness measures. ACM Comput. Surv. 54, 1–31 (2021).

15.	 Marchet, C. et al. Data structures based on k-mers for querying
large collections of sequencing data sets. Genome Res 31, 1–12
(2021).

16.	 Blackwell, G. A. et al. Exploring bacterial diversity via a curated
and searchable snapshot of archived DNA sequences. PLoS Biol.
19, e3001421 (2021).

17.	 Bradley, P., den Bakker, H. C., Rocha, E. P. C., McVean, G. & Iqbal, Z.
Ultrafast search of all deposited bacterial and viral genomic data.
Nat. Biotechnol. 37, 152–159 (2019).

18.	 Grabowski, S. & Kowalski, T. M. MBGC: multiple bacteria genome
compressor. Gigascience 11, giab099 (2022).

19.	 Deorowicz, S., Danek, A. & Li, H. AGC: compact representation
of assembled genomes with fast queries and updates.
Bioinformatics 39, btad097 (2023).

20.	 Zielezinski, A., Vinga, S., Almeida, J. & Karlowski, W. M.
Alignment-free sequence comparison: benefits, applications, and
tools. Genome Biol. 18, 186 (2017).

21.	 Burrows, M. & Wheeler, D. J. A block-sorting lossless data
compression algorithm. SRC Research Report 124, Digital
Equipment Corporation, 1–24 (Digital Equipment Corporation
Press, 1994).

22.	 Hach, F., Numanagic, I., Alkan, C. & Sahinalp, S. C. SCALCE:
boosting sequence compression algorithms using locally
consistent encoding. Bioinformatics 28, 3051–3057 (2012).

23.	 Patro, R. & Kingsford, C. Data-dependent bucketing improves
reference-free compression of sequencing reads. Bioinformatics
31, 2770–2777 (2015).

24.	 Grabowski, S., Deorowicz, S. & Roguski, Ł. Disk-based
compression of data from genome sequencing. Bioinformatics 31,
1389–1395 (2015).

25.	 Chandak, S., Tatwawadi, K. & Weissman, T. Compression of
genomic sequencing reads via hash-based reordering: algorithm
and analysis. Bioinformatics 34, 558–567 (2018).

26.	 Lu, J. et al. Metagenome analysis using the Kraken software suite.
Nat. Protoc. 17, 2815–2839 (2022).

27.	 Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge:
rapid and sensitive classification of metagenomic sequences.
Genome Res. 26, 1721–1729 (2016).

28.	 Břinda, K. Novel Computational Techniques for Mapping and
Classification of Next-generation Sequencing Data. PhD thesis,
Univ. Paris-Est (2016).

29.	 Břinda, K., Salikhov, K., Pignotti, S. & Kucherov, G. ProPhyle: an
accurate, resource-frugal and deterministic DNA sequence
classifier. Zenodo https://doi.org/10.5281/zenodo.1045429 (2017).

30.	 Ge, H., Sun, L. & Yu, J. Fast batch searching for protein homology
based on compression and clustering. BMC Bioinform. 18,
508 (2017).

31.	 Reiter, T. Clustering the NCBI nr database to reduce database
size and enable faster BLAST searches. Arcadia Science
https://doi.org/10.57844/ARCADIA-W8XT-PC81 (2023).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02625-2
https://doi.org/10.1093/bib/bbt088
https://doi.org/10.1093/bib/bbt088
https://doi.org/10.5281/zenodo.1045429
https://doi.org/10.57844/ARCADIA-W8XT-PC81
https://doi.org/10.57844/ARCADIA-W8XT-PC81

Nature Methods | Volume 22 | April 2025 | 692–697 697

Article https://doi.org/10.1038/s41592-025-02625-2

32.	 Collin, L. & Pavlov, I. XZ Utils. Available from https://tukaani.org/xz/
(2009).

33.	 Katz, L. et al. Mashtree: a rapid comparison of whole genome
sequence files. J. Open Source Softw. 4, 1762 (2019).

34.	 Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K.
T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic
genomes reveals clear species boundaries. Nat. Commun. 9,
5114 (2018).

35.	 Breitwieser, F. P., Lu, J. & Salzberg, S. L. A review of methods
and databases for metagenomic classification and assembly.
Brief. Bioinform. 20, 1125–1136 (2019).

36.	 Bingmann, T., Bradley, P., Gauger, F. & Iqbal, Z. COBS: A Compact
Bit-Sliced Signature Index. in String Processing and Information
Retrieval 285–303 (Springer International Publishing, 2019).

37.	 Karasikov, M. et al. MetaGraph: indexing and analysing nucleotide
archives at petabase-scale. Preprint at bioRxiv https://doi.org/
10.1101/2020.10.01.322164 (2020).

38.	 Rahman, A., Chikhi, R. & Medvedev, P. Disk compression of k-mer
sets. Algorithms Mol. Biol. 16, 10 (2021).

39.	 Turner, I., Garimella, K. V., Iqbal, Z. & McVean, G. Integrating
long-range connectivity information into de Bruijn graphs.
Bioinformatics 34, 2556–2565 (2018).

40.	 Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics https://doi.org/10.1093/bioinformatics/bty191
(2018).

41.	 Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to
discover antibiotic resistance genes in bacterial genomes.
Antimicrob. Agents Chemother. 58, 212–220 (2014).

42.	 Ferragina, P. & Manzini, G. Opportunistic data structures with
applications. In Proc. 41st Annual Symposium on Foundations of
Computer Science 390–398 https://doi.org/10.1109/SFCS.
2000.892127 (IEEE Computer Society, 2000).

43.	 Gagie, T., Navarro, G. & Prezza, N. Fully functional suffix trees and
optimal text searching in BWT-runs bounded space. J. ACM 67,
1–54 (2020).

44.	 Zakeri, M., Brown, N. K., Ahmed, O. Y., Gagie, T. & Langmead, B.
Movi: a fast and cache-efficient full-text pangenome
index. iScience https://doi.org/10.1016/j.isci.2024.111464
(2024).

45.	 Ames, S. K. et al. Scalable metagenomic taxonomy classification
using a reference genome database. Bioinformatics 29,
2253–2260 (2013).

46.	 Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 15, R46 (2014).

47.	 Molloy, E. K. & Warnow, T. Statistically consistent
divide-and-conquer pipelines for phylogeny estimation using
NJMerge. Algorithms Mol. Biol. 14, 14 (2019).

48.	 Goig, G. A., Blanco, S., Garcia-Basteiro, A. L. & Comas, I.
Contaminant DNA in bacterial sequencing experiments is a major
source of false genetic variability. BMC Biol. 18, 24 (2020).

49.	 Mäklin, T. et al. Bacterial genomic epidemiology with mixed
samples. Microb. Genom. 7, 000691 (2021).

50.	 Kelleher, J. et al. Inferring whole-genome histories in large
population datasets. Nat. Genet. 51, 1330–1338 (2019).

51.	 Gardy, J. L. & Loman, N. J. Towards a genomics-informed,
real-time, global pathogen surveillance system. Nat. Rev. Genet.
https://doi.org/10.1038/nrg.2017.88 (2017).

52.	 Břinda, K. et al. Rapid inference of antibiotic resistance and
susceptibility by genomic neighbour typing. Nat. Microbiol. 5,
455–464 (2020).

53.	 Břinda, K., Baym, M. & Kucherov, G. Simplitigs as an efficient
and scalable representation of de Bruijn graphs. Genome Biol. 22,
96 (2021).

54.	 Rahman, A. & Medevedev, P. Representation of k-mer sets
using spectrum-preserving string sets. J. Comput. Biol. 28,
381–394 (2021).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2025

http://www.nature.com/naturemethods
https://tukaani.org/xz/
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1016/j.isci.2024.111464
https://doi.org/10.1038/nrg.2017.88

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Methods
Conceptual overview of phylogenetic compression
To organize input genomes into phylogenetic trees and compress/
index them in a scalable manner, phylogenetic compression combines
four conceptual steps.

Step 1: Clustering/batching. The goal of this step (illustrated in
Fig. 1b(i)) is to partition genomes into batches of phylogenetically
related genomes, of a limited size and diversity, that can be easily com-
pressed and searched together using highly reduced computational
resources. During downstream compression, indexing and analyses,
these individual batches are processed separately, and their maximum
size and diversity can establish upper bounds on the maximum time
and space necessary for processing a single batch. For instance, in the
realm of k-mer aggregative methods (see an overview in ref. 15), this
corresponds to a matrix decomposition of a large k-mer annotation
matrix into a series of small matrices that have both dimensions small,
and analogically in the realm of dictionary compression, to reducing
the input strings and dictionary sizes.

For microorganisms, clustering can be accomplished rapidly by
metagenomic classification35 applied to the raw reads or other meth-
ods for species identification. Microbial genomes in public reposi-
tories form distinct clusters, usually (but not always) corresponding
to individual species34, and metagenomic classification can assign
individual genomes to these respective clusters, defined by the under-
lying reference database such as NCBI RefSeq35. This requires only a
constant time per dataset and can be fully parallelized, resulting thus
in a constant-time clustering if sufficiently many computational nodes
are available.

The obtained clusters are then reorganized into batches. First,
too small clusters are merged, creating a special pseudo-cluster called
dustbin, whose purpose is to collect divergent, weakly compressible
genomes from sparsely sampled regions of the tree of life. Subse-
quently, the clusters that are too large—such as those corresponding
to oversampled human pathogens (for example, Salmonella enterica
or Escherichia coli)—as well as the dustbin are then divided into smaller
batches, to provide guarantees on the maximum required downstream
computational resources per one batch. An additional discussion of
batching is provided in Supplementary Note 5.

Step 2: Inference of a compressive phylogeny. In this step (illus-
trated in Fig. 1b(ii)), the computed batches are equipped with a so-
called ‘compressive phylogeny’, which is a phylogeny approximating
the true underlying phylogenetic signal with sufficient resolution
for compression purposes. If accurate inference methods such as
RaxML55 cannot be applied due to the associated bioinformatics com-
plexity or high resource requirements, phylogenies can be rapidly
estimated via lighter approaches such as the Mashtree algorithm33
(re-implemented more efficiently in Attotree; https://github.com/
karel-brinda/attotree/) instead, with only a negligible impact on the
resulting compression performance (Extended Data Fig. 5 and Sup-
plementary Note 3).

Step 3: Data reduction/reordering. The compressive phylogenies
obtained in the previous step serve as a template for phylogenetic
reordering of individual batches. The specific form of reordering can
vary depending on the specific data representations, intended applica-
tions and method of subsequent compression or indexing. In principle,
the reordering can occur in two directions: as a left-to-right genome
reordering based on the topology of the compressive phylogeny, or
as a bottom-up reduction of genomic content along the phylogeny
(followed by left-to-right enumeration). Regardless of the specific
form, this transformation is always reversible, thus sharing similari-
ties with methods such as the Burrows–Wheeler transform21. Fig. 1b(ii)
illustrates this via the colored arrows.

Step 4: Compression or indexing using a calibrated low-level tool.
Finally, the reordered data are compressed or indexed using a low-level
tool. At this stage, thanks to both phylogeny-based clustering and
phylogeny-based reordering, the data are highly locally compress-
ible, which enables the use of a wide range of general and specialized
genome compressors/indexes. Nevertheless, it is crucial to ensure that
the properties of the underlying algorithms and their parameters are
closely tailored to the specific characteristics of the input data and their
intended applications. For instance, to compress genomes in FASTA
format, compressors based on Lempel–Ziv require the window/dic-
tionary sizes to be large enough to span multiple genomes (Extended
Data Fig. 3a), and general compressors also critically depend on FASTA
being in a one-line format (Extended Data Fig. 3b). As a general rule,
general compressors must always be carefully tested and calibrated
for specific genomic data types, potentially requiring format cleaning
and parameter calibration, whereas specialized genome compressors
and indexers are usually pre-calibrated in their default setting and
provided with well-tested configuration presets. While in many practi-
cal scenarios, individual batches are compressed/indexed separately,
some protocols may involve merging reordered batches to create a
single comprehensive archive/index. This step applies to the results
shown in Fig. 1c.

The MiniPhy framework for phylogenetic compression
Here, we describe the specific design choices of our implementation
of phylogenetic compression for assemblies and de Bruijn graphs.
More information and relevant links, including specific tools such
as MiniPhy and Phylign and the resulting databases, can be found on
https://brinda.eu/mof/.

Clustering/batching. As genome collections encountered in practice
can vary greatly in their properties as well as the available metadata,
clustering is expected to be performed by the user. The recommended
procedure is to identify species clusters using standard metagenomic
approaches, such as those implemented in the Kraken software suite26,
as the obtained abundance profiles can also be used for quality control
to filter out those samples that are likely contaminated. The next step is
to divide the obtained genome clusters into smaller batches, analogi-
cally to the examples in Extended Data Fig. 1 and as discussed in more
details in Supplementary Note 5 (and the corresponding implementa-
tion in the MiniPhy package, see below). The order in which genomes
are taken within individual clusters can impact the final compres-
sion performance; based on our experience, lexicographic order with
accessions and ordering according to the number of distinct k-mers
per genome provide surprisingly good performance as both of these
approaches tend to group phylogenetically close genomes closer to
each other. The protocol can be customized further to suit the perfor-
mance characteristics of algorithms downstream, such as by adjusting
the batch size or the parameters controlling the creation of dustbin
batches (Supplementary Note 5). If the total size of a collection is small
enough, the clustering/batching step may be skipped entirely and the
entire collection treated as a single batch.

Inference of a compressive phylogeny. Users have the option to pro-
vide a custom tree generated by an accurate inference method such as
RAxML55. However, in most practical scenarios, such trees are not avail-
able, and MiniPhy then uses Attotree (https://github.com/karel-brinda/
attotree/), an efficient re-implementation of the Mashtree algorithm33,
to generate a compressive phylogeny through sketching. Both Mash-
tree and Attotree use Mash56 to estimate, using the MinHash sketching
technique57 and a simple evolutionary model58, the evolutionary dis-
tances between all pairs of genomes. This is followed by the inference
of a compressive phylogeny using the Neighbor-Joining algorithm59,
as implemented in QuickTree60. Finally, MiniPhy post-processes
the obtained tree using standard tree-transformation procedures

http://www.nature.com/naturemethods
https://github.com/karel-brinda/attotree
https://github.com/karel-brinda/attotree
https://brinda.eu/mof/
https://github.com/karel-brinda/attotree
https://github.com/karel-brinda/attotree

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

implemented in the ETE3 library61, involving tree standardization, set-
ting a midpoint outgroup, ladderization and naming the internal nodes.

MiniPhy. This is a central package for phylogenetic compression,
including support for batching, and for calculating the associated
statistics (see below). MiniPhy (https://github.com/karel-brinda/
miniphy/) is implemented as a Snakemake62 pipeline, offering three
protocols for phylogenetic compression: (1) compression of assemblies
based on left-to-right reordering; (2) compression of de Bruijn graphs
represented by simplitigs28,53,54 based on left-to-right reordering; and
(3) compression of de Bruijn graphs through bottom-up k-mer propa-
gation using ProPhyle28,29.

In the third protocol, k-mer propagation is executed recursively in
a bottom-up manner: at each internal node, the k-mer sets of the child
nodes are loaded, their intersection computed, stored at the node, the
intersection subtracted from the child nodes, and all three k-mer sets
saved in the form of simplitigs28,53,54; ProphAsm53 performs all these
operations. This process results in a progressive reduction of the k-mer
content within the phylogeny in a lossless manner28.

The output of each of the three protocols is a TAR file containing
text files in their phylogenetic order, created from the corresponding
list of files using the following command:

tar cvf - -C $(dirname {input.list}) -T {input.list}
--dereference

For assemblies, these text files are the original assembly FASTA
files, converted by SeqTK63 to the single-line format with all nucleo-
tides in uppercase (‘seqtk seq -U {input.fa}’). For simplitigs, the
text files are end-of-line-delimited lists of simplitigs in the order as
computed by ProphAsm, obtained from its output using the command
‘seqtk seq {input.fa} | grep -v \>’. The resulting TAR file is
then compressed using XZ (‘xz -9 -T1’; see section ‘Calibration and
evaluation of phylogenetic compression’), and the resulting .tar.xz
file distributed to users or further recompressed or indexed by other
low-level tools, while preserving the underlying order.

MiniPhy statistics. For each of the three implemented protocols,
MiniPhy generates a comprehensive set of statistics to quantify the
compressibility of the batch, including: (1) set (the size of the k-mer
set computed from all nodes of the compressive phylogeny); (2) mul-
tiset (the size of the k-mer multiset computed as a union of k-mer sets
from individual nodes); (3) sum_ns (the total number of sequences);
(4) sum_cl (the total sequence length); (5) recs (the number of records
corresponding to individual nodes); and (6) xz_size (the size of the TAR
file after XZ compression). The sizes of k-mer sets and multisets are
determined from k-mer histograms computed by JellyFish 2 (v2.2.10)64
using the commands:

jellyfish count --threads {threads} --canonical
--mer-len 31 --size 20 M
--output {jf_file} {input}

followed by

jellyfish histo --threads {threads} --high 1000000
{jf_file}

The computed statistics are used for calculating additional
compression-related metrics, such as the number of bits per distinct
k-mer or kilobytes per genome.

Phylogeny-explained redundancy. By comparing the sizes of k-mer
sets and multisets before and after reduction by k-mer propagation
along a compressive phylogeny, it is possible to quantify the proportion

of the k-mer signal that is explained by the phylogeny. This yields the
so-called ‘phylogeny-explained k-mer redundancy’, quantifying the
proportion of redundant occurrences of canonical k-mers that can be
eliminated through k-mer propagation, of those potentially eliminable
if the phylogeny perfectly explained the distribution of all the k-mers
(that is, every k-mer occurring only once after propagation and thus
being associated with a single entire subtree):

removed_redundancy = |multiset_preprop| − |multiset_postprop|
|multiset_preprop| − |set|

For collections comprising multiple batches, these variables refer
to the global statistics, that is, the sizes of set and multiset unions
across all batches.

MiniPhy-COBS. MiniPhy-COBS (https://github.com/leoisl/miniphy-
cobs/) is a Snakemake62 pipeline designed to create phylogenetically
compressed ClaBS COBS indexes36 (classical bit-sliced index) from
assemblies already phylogenetically compressed by MiniPhy. ClaBS is
a variant of COBS analogous to the original BIGSIdata structure17, using
Bloom filters of the same size; this property is important for ensuring
that the order of Bloom filters is preserved and that the neighboring
Bloom filters are mutually compressible (Supplementary Note 4).
The workflow for each batch involves three main steps:

	1.	 Renaming input assemblies to align their lexicographic and
phylogenetic orders within each batch

	2.	 Constructing COBS ClaBS indexes with:
�cobs classic-construct -T 8 {batch} {output}.
cobs_classic

	3.	 Compressing the obtained indexes using:
�xz -9 -T1 -e --lzma2=preset=9,dict=1500MiB,
nice=250

Updated ProPhyle. To simplify the integration with MiniPhy for
bottom-up k-mer propagation, a new version of ProPhyle28,29 was
released (v0.3.3.1; https://github.com/prophyle/prophyle/). The main
improvement compared to previous versions includes the possibility
to stop after k-mer propagation, without proceeding to the construc-
tion of an FM-index, as such an index is unnecessary for phylogenetic
compression using MiniPhy. The new version of ProPhyle is provided in
the form of a GitHub release (https://github.com/prophyle/prophyle/
releases/) and pre-built packages on Bioconda65.

Acquisition of the test collections
An overview of the five test collections is provided in Supplementary
Note 2, and their basic characteristics, including the original file size,
number of samples, species count and the number of distinct k-mers,
are provided in Supplementary Table 1.

GISP. The GISP collection was obtained from GitHub repository
available at https://github.com/c2-d2/rase-db-ngonorrhoeae-gisp/
(version 04a132c)52. The assemblies (n = 1,102) were obtained from the
‘isolates/contigs’ subdirectory of the GitHub repository (containing the
original genomes including the plasmids), and the associated RAxML
phylogenetic tree was downloaded from the ‘tree/’ subdirectory of
the same repository. The original data had originally been analyzed
in ref. 66 and provided for download on Zenodo (https://doi.org/
10.5281/zenodo.2618836; 2019).

NCTC3k. The assemblies were obtained in GFF format from ftp://ftp.
sanger.ac.uk/pub/project/pathogens/NCTC3000 by

wget -m -np -nH --cut-dirs 3 –retr-symlinks
ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000

http://www.nature.com/naturemethods
https://github.com/karel-brinda/miniphy/
https://github.com/karel-brinda/miniphy/
https://github.com/leoisl/miniphy-cobs
https://github.com/leoisl/miniphy-cobs
https://github.com/prophyle/prophyle
https://github.com/prophyle/prophyle/releases
https://github.com/prophyle/prophyle/releases
https://github.com/c2-d2/rase-db-ngonorrhoeae-gisp/
https://doi.org/10.5281/zenodo.2618836
https://doi.org/10.5281/zenodo.2618836
http://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000
http://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

The obtained files were converted to the FASTA format by any-
2fasta (https://github.com/tseemann/any2fasta/, v0.4.2) parallelized
by GNU Parallel67 and uploaded to Zenodo (https://doi.org/10.5281/
zenodo.4838517). The number of species in the collection was deter-
mined based on the data provided in the main Sanger/Public Health
England assembly table for NCTC 3000 (https://www.sanger.ac.uk/
resources/downloads/bacteria/nctc/, retrieved on 14 September 2022).
The HTML table was manually exported to XLSX and used to construct
a translation table from NCTC accession numbers to correspond-
ing species. The accessions of the assemblies in our collection were
then extracted from file names and translated to species, and the
species were counted. Overall, this resulted in n = 1,065 assemblies of
259 species.

SC2. The SARS-CoV-2 data were downloaded from the GISAID website
(https://www.gisaid.org/, 18 May 2021) in the form of an assembly
file (‘sequences_fasta_2021_05_18.tar.xz’, n = 1,593,858) and a
Sarscov2phylo phylogeny (https://doi.org/10.5281/zenodo.4089815,
‘gisaid-hcov-19-phylogeny-2021-05-11.zip’, n = 590,952). After
converting both files to the same set of identifiers and removing iso-
lates with missing data, we obtained n = 590,779 genome assemblies
organized in a phylogenetic tree.

BIGSIdata. The BIGSI collection data17 were downloaded from the
associated FTP server (http://ftp.ebi.ac.uk/pub/software/bigsi/nat_bio-
tech_2018/), including cleaned de Bruijn graphs, taxonomic informa-
tion and abundance reports computed using Kraken and Bracken26. The
download was done using RSync in groups corresponding to individual
EBI prefixes (for example, DRR000) by

rsync -avP --min-size=1 --exclude ‘*stats*‘
--exclude ‘*uncleaned*‘ --exclude ‘*bloom*‘
--exclude ‘*log*‘
rsync://ftp.ebi.ac.uk/pub/software/bigsi/
nat_biotech_2018/ctx/{prefix}

The prefixes were organized into 15 groups of at most 100 pre-
fixes each, and the groups were processed individually in succession
on a research computing cluster, with a parallelization using Slurm
and jobs deployed using Snakemake62 (between 1 August 2020 and 15
September 2020). From the downloaded McCortex files, unitigs were
extracted using McCortex:

bzcat -f {input} | mccortex31 unitigs -m 3G -

Only those graphs with an uncorrupted McCortex file, Bracken
information available, unitigs of total length ≥2 kbp with ≤15 million
distinct k-mers and with no file system error encountered were used
in the subsequent processing. This resulted in n = 425,160 de Bruijn
graphs (of the original n = 463,331 genomes from the FTP or n = 447,833
genomes reported in ref. 17).

661k. The 661k collection was downloaded in March 2021 from the
official FTP repository16, using RSync by

rsync -avp rsync://ftp.ebi.ac.uk/pub/databases/
ENA2018-bacteria-661k/Assemblies/{pref}

The command was run for individual prefixes ranging from 000
to 661, which resulted in n = 661,405 .fa.gz files.

Calibration and evaluation of phylogenetic compression
Calibration of XZ as a low-level tool for phylogenetic compres-
sion. The compression performance of GZip, BZip2 and XZ was evalu-
ated using the GISP collection, converted to the single-line FASTA

format and with genomes sorted from left to right according to the
Mashtree phylogeny (Extended Data Fig. 3). For each compressor, the
compression was performed with a range of presets and always with
a single thread. To evaluate the compression performance with large
resources available, two additional manually tuned modes with larger
dictionaries, denoted by ‘M’ and ‘MM’, were added to the XZ benchmark,
corresponding to the parameters

--lzma2=preset=9,dict=512MiB

and

--lzma2=preset=9,dict=1500MiB,nice=250

respectively.

To evaluate the impact of different line lengths on the compres-
sion, the source FASTA was reformatted for different lengths using
SeqTK63 and compressed using XZ by

seqtk seq -l {line_length} | xz -9 -T1

Comparison of scaling modes. The SC2 collection was provided in the
left-to-right order according to Sarscov2phylo phylogeny (Extended
Data Fig. 4). The genomes were progressively uniformly subsampled,
stored as end-of-line-separated lists of sequences (without sequence
headers), and then compressed using individual compressors, namely
(1) XZ: ‘xz -9 -T1’, (2) BZip2: ‘bzip2 --best’, (3) GZip: ‘gzip -9’
and (4) Re-Pair68,69 (https://github.com/rwanwork/Re-Pair/; version
as of 26 October 2021):

repair -v -I {inp_seqs}; tar cf {inp_seqs}.tar
{inp_seqs}.prel {inp_seqs}.seq

As Re-Pair did not provide sufficient scalability for the entire SC2
dataset and the implementation suffered from various bugs, the Re-Pair
sub-experiment was limited only to n ≤ 70,000, the integrity of the
output files always verified via their decompression and line counting,
and all archives lacking integrity were discarded from the subsequent
analysis.

The scalability comparisons for the NCTC3k and GISP collec-
tions were performed analogically, but using MiniPhy (commit
‘41976c7’) and with sequence headers preserved. The order of all
assemblies was first randomized by ‘sort -R’ and the individual
sub-samplings for compression then generated as prefixes of this
randomized list. The size comparisons were made based on the .tar.
xz output file of the pipeline, as well as additional files obtained via
their recompression by GZip and BZip2 with the same parameters
as above.

Order comparison. The SC2 collection was put into three different
orderings: the original ordering (corresponding to the lexicographi-
cal ordering by sequence names), the left-to-right ordering of the
phylogeny and a randomized order (Extended Data Fig. 5). In all cases,
a custom Python script using BioPython70 was used to order the FASTA
file and remove sequence names, and its output was compressed by the
XZ compressor using one thread and the best preset (‘xz -T1 -9’).
The comparisons for GISP and NCTC3k were performed analogically,
but with sequence headers preserved.

Summary of MiniPhy calibration. XZ with the parameters ‘xz -9 -T1’
was chosen as the default compression procedure for MiniPhy,
and Mashtree33 or its reimplementation Attotree (https://github.
com/karel-brinda/attotree/) as the default method for inferring
compressive phylogenies. These choices were done based on

http://www.nature.com/naturemethods
https://github.com/tseemann/any2fasta
https://doi.org/10.5281/zenodo.4838517
https://doi.org/10.5281/zenodo.4838517
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
https://www.gisaid.org/
https://doi.org/10.5281/zenodo.4089815
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/
https://github.com/rwanwork/Re-Pair
https://github.com/karel-brinda/attotree/
https://github.com/karel-brinda/attotree/

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

the observations that the most popular method, GZip, always
performed poorly for bacteria, although provided a moderate
compression performance for viruses. On the other hand, XZ
achieved steep compression curves for low-diversity collections,
with compression ratio improving by one order per one order
increase of the number of genomes, for both viruses and bacteria.
NCTC3k as a high-diversity collection was weakly compressible
even with the best approaches (less than one order of magnitude
of compression after a three orders-of-magnitude increase in the
number of genomes). One of the best available (but still highly
experimental) grammar-based compressors, Re-Pair68,69, achieved
a similar asymptotic behavior as XZ, indicative of the potential of
grammar compressors for phylogenetic compression to provide
random access, but its usability remains experimental. Phylo-
genetic reordering boosted compression substantially for both
low-diversity and high-diversity collections (reduction in size
between 38% and 67% compared to random orders). Finally, com-
pressive phylogenies computed using Mashtree33 provided nearly
equal compression performance as an accurate approach using
RaxML55.

Phylogenetic compression of the BIGSIdata collection of de
Bruijn graphs
Clustering and batching. For every sample, the outputs of Kraken
and Bracken26 were extracted from the downloaded data as provided
in the online FTP repository (https://ftp.ebi.ac.uk/pub/software/
bigsi/nat_biotech_2018/ctx/) in the Bracken files (‘{accession}.
ctx_braken.report’) as the previously identified most prevalent
species (corresponding to the row with the highest value of the ‘frac-
tion_total_reads’ column). Clustering and batching then pro-
ceeded as depicted in Extended Data Fig. 1 and further commented in
Supplementary Note 5, with genomes being sorted according to the
number of k-mers before their partitioning into batches. Overall, the
genomes of the 1,443 identified species (clusters) were partitioned
into 568 regular batches and 6 dustbin batches, resulting in a total
of 574 batches.

Phylogenetic compression. Phylogenetic compression was per-
formed twice, with slightly different workflows.

First, phylogenetic compression proceeded manually, via a
workflow whose modified version was later implemented in Mini-
Phy. For individual batches, compressive phylogenies were com-
puted using Mashtree33 with the default parameters. The resulting
trees and McCortex unitig files were then used as input for Pro-
Phyle (v0.3.3.0) to propagate k-mers along the phylogenies, com-
pute simplitigs28,53,54 and merge the output FASTA files into a single
one by

prophyle index -k 31 -A -g {dir_genomes} {tree}
{batch_name}

The resulting FASTA files produced by ProPhyle (called ‘index.
fa’) were converted into the single-line format using SeqTK63 and
compressed using XZ by

seqtk seq {prophyle_index_fa} | xz -9 -T8

The resulting files occupied 74.4 GB and were deposited on
Zenodo (https://doi.org/10.5281/zenodo.4086456 and https://doi.
org/10.5281/zenodo.4087330). The correctness of the whole approach
was validated using a dedicated Python package for decompression
(see below); the k-mer counts in the decompressed data (obtained
by kc-c3, https://github.com/lh3/kmer-cnt/, commit ‘e257471’) were
compared to those obtained from the original McCortex files (from
the total length and count of unitigs). All k-mer counts were equal,

with the exception of four samples with from 17 to 26 more reported
k-mers after decompression.

Second, an analogical version of the propagated simplitig files,
but without sequence headers and with compression using a single
thread only, was later created using the MiniPhy pipeline and resulted
in files occupying in total 52.3 GB, which were subsequently deposited
on Zenodo (https://doi.org/10.5281/zenodo.5555253).

Decompression of BIGSIdata de Bruijn graphs. To decompress
de Bruijn graphs from the files obtained by k-mer propagation,
all k-mers along all root-to-leaf paths need to be collected. We
implemented this specifically for BIGSIdata in a dedicated Python
package provided in GitHub (https://github.com/karel-brinda/
phylogenetic-compression-supplement/). The program downloads
individual data files from Zenodo from the accessions above (the
first version of the dataset) and reconstructs the original k-mer
sets using the following procedure. First, it decompresses the XZ
file of a given batch, splits it according to files corresponding to
individual nodes of the compressive phylogeny, recompresses
individual nodes using GZip parallelized by GNU Parallel67, and for
all leaves (genomes) it reconstructs the corresponding k-mer sets
by merging all GZip files along the corresponding root-to-leaf paths
using the Unix cat command. From the obtained output FASTA files,
de Bruijn graphs can be easily reconstructed by standard tools such
as BCALM2 (ref. 71).

Comparison to the original compression protocol. As the samples
in our BIGSIdata collection do not fully correspond to the data that
were used in the original publication of BIGSI17, we recalculated the
size statistics of the published McCortex files of our graphs based
on the FTP list-off files as provided within individual subdirectories
of http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ (as of
27 August 2021). These were downloaded per individual prefix direc-
tories recursively using wget by

wget -nv -e robots=off -np -r -A .html
http://ftp.ebi.ac.uk/pub/software/bigsi/
nat_biotech_2018/ctx/{prefix}/

The corresponding parallelized Snakemake pipeline was run on a
desktop computer. This resulted in a table containing 484,463 files, of
which 162,645 were compressed using BZip2. The individual file records
were compared with the list of accessions of files that were previously
retrieved and sorted in our BIGSIdata collection, and the volume of the
source graphs on FTP calculated to be 16.7 TB.

Comparison to Metagraph. The size of the phylogenetically com-
pressed BIGSIdata collection was compared to the size of an analogous
Metagraph index from the original paper37, based on the statistics
in Table 1 and Supplementary Table 1 therein (the Sequence Read
Archive-Microbe collection): n = 446,506 indexed datasets, 39.5 G
canonical k-mers (with the same k-mer size, k = 31) and the size of the
annotated de Bruijn graph being 291 GB (graph 30 GB + annotations
261 GB). This index was constructed from the same datasets as those
in the original BIGSI paper17 but using a slightly different computa-
tional methodology. Consequently, the index of Metagraph contained
approximately 4% fewer distinct canonical k-mers (k = 31) compared
to BIGSIdata as used in this paper. To compare the two compression
approaches (MiniPhy with bottom-up k-mer propagation and XZ as
a low-level tool versus Metagraph), both applied to the similar but
different input data, we used the number of bits per distinct k-mer
as the statistic for comparison, which was found to be 10.2 and 58.9,
respectively. Therefore, the MiniPhy compression was more efficient
by an estimated factor of 5.78. We note that phylogenetic compres-
sion could be directly embedded into Metagraph (by imposing the

http://www.nature.com/naturemethods
https://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/
https://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/
https://doi.org/10.5281/zenodo.4086456
https://doi.org/10.5281/zenodo.4087330
https://doi.org/10.5281/zenodo.4087330
https://github.com/lh3/kmer-cnt
https://doi.org/10.5281/zenodo.5555253
https://github.com/karel-brinda/phylogenetic-compression-supplement
https://github.com/karel-brinda/phylogenetic-compression-supplement
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

phylogenetic order of columns during index construction), which may
help to further reduce its index size.

Phylogenetic compression of the 661k assembly collection
Clustering and batching. Species clusters were identified based
on the most prevalent species in the sample as identified using Kraken 2
and Bracken26 from the original raw-read data; that is, based on the ‘V2’
column in the ‘File1_full_krakenbracken.txt’ file of the supple-
mentary materials of ref. 16. The creation of the dustbin pseudo-cluster
and formation of individual batches proceeded by the steps docu-
mented in Extended Data Fig. 1 and as later implemented directly
within MiniPhy, with genomes pre-sorted lexicographically according
to ENA accessions.

Phylogenetic compression using MiniPhy. The obtained batches
were compressed using the MiniPhy pipeline as described above; that
is, compressive phylogenies were computed using Mashtree33 and
used for (1) left-to-right reordering of the assemblies, (2) left-to-right
reordering of simplitigs28,53,54 of the corresponding de Bruijn graphs,
and (3) bottom-up k-mer propagation and simplitig computation by
ProPhyle; while in all cases storing the simplitigs and assemblies as
text and FASTA files, respectively, followed by a compression by ‘xz -9
-T1’. The compressed assemblies were deposited on Zenodo (https://
doi.org/10.5281/zenodo.4602622).

Calculations of the statistics. All the statistics used in the plots and
tables were calculated based on the numbers obtained from MiniPhy.
Additionally, the total number of k-mers was calculated using JellyFish64
(v.2.2.10) by

jellyfish count --mer-len 31 --size 200G --threads 32
--output kmer_counting.jf --out-counter-len=1
--canonical

which resulted in 44,349,827,744 distinct k-mers (28,706,296,898
unique k-mers) for the 661k collection and in 35,524,194,027 dis-
tinct k-mers (22,904,412,202 unique k-mers) for the 661k-HQ col-
lection (as described below). The files uploaded to Zenodo (https://
doi.org/10.5281/zenodo.4602622) are higher by approximately
0.2 GB (approximately 0.7% of the total size) compared to the val-
ues in Supplementary Table 3 as the Zenodo submission was done
with an older version of compressive phylogenies without their
post-processing.

Recompression using MBGC. Individual phylogenetically com-
pressed batches from the previous step were converted to single
FASTA files by ‘tar -xOvf {input.xz}’ and then compressed using
MBGC18 (v.1.2.1) with eight threads and the maximum compression
level by

mbgc -i {input.fa} -c 3 -t 8 {output.mbgc}

Compression in the lexicographic order. Data in the ENA and other
similar repositories have identifiers assigned in the order in which
they are uploaded; individual uploads typically proceed by upload-
ing entire projects, and these typically involve phylogenetically very
close genomes. For instance, genomes from a study investigating a
hospital outbreak often occupy a range of accessions. Therefore,
lexicographically sorted genomes from the ENA may be used as
an approximation of phylogenetic compression. To compare the
compressibility of the 661k collection in the ENA accession lexico-
graphic order to the full phylogenetic compression, we streamed
the genomes from the main collection file provided on http://ftp.
ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661_assemblies.
tar, decompressed them on the fly, converted them to the one-line

FASTA format using SeqTK63 and compressed them using XZ with
32 threads by

pv 661_assemblies.tar | tar -xOf - | gunzip -c |
seqtk seq | xz -9 -T32

Phylogenetic compression of the 661k/661k-HQ k-mer indexes
The 661k-HQ collection. To reduce biases in k-mer matching, a
high-quality variant of the 661k collection, called 661k-HQ, was con-
structed from the 661k collection by excluding genomes that had not
passed quality control in the original study16 (3.24% of the genomes).
For simplicity, the batches and genome orders in 661k-HQ were kept
the same as in 661k.

Phylogenetic compression of the 661k/661k-HQ COBS indexes.
COBS indexes for the 661k and 661k-HQ collection were constructed
per batch using the MiniPhy-COBS pipeline (see ‘MiniPhy-COBS’ above),
which produces the ClaBS variant of the index with all Bloom filters of
the same size sorted in a left-to-right order according to the phylogeny,
and compresses them using XZ.

Comparisons to the compact COBS indexes. The compact vari-
ant of the COBS index (default in COBS), based on adaptive adjust-
ments of Bloom filter sizes through subindexes of different heights,
was used as a baseline in our comparisons. For the 661k collection,
we used the original index as provided (http://ftp.ebi.ac.uk/pub/
databases/ENA2018-bacteria-661k/661k.cobs_compact; retrieved
on 8 September, 937 GB). For building a COBS index for 661k-HQ, we
used the same construction protocol as in ref. 16. Both indexes were
then compressed on a highly performant server by XZ using 32 cores
(‘xz -9 -T32’).

All of the obtained data points are provided in Supplementary
Table 4.

Phylign pipeline for alignment against all pre-2019 bacteria
from the ENA
Overview. The Phylign pipeline (https://github.com/karel-brinda/
phylign/) uses phylogenetically compressed assemblies (661k) and
COBS indexes (661k-HQ) as described above to align queries against
the entire 661k-HQ collection in a fashion similar to BLAST (Sup-
plementary Note 6). The search procedure consists of two phases:
matching the queries against the k-mer indexes using COBS36
to identify the database’s most similar genomes for each query,
followed by an alignment of the queries to their best-matching
genomes using Minimap2 (ref. 40). Phylign is developed as a Snake-
make62 pipeline, using Bioconda65 for an automatic software man-
agement and the standard Snakemake resource management62 to
control the CPU core assignments and limit RAM usage according
to user-specified parameters. Upon its first execution, Phylign
downloads its phylogenetically compressed reference database
from the Internet (102 GB), consisting of 29.2 GB of assemblies and
72.8 GB of COBS indexes.

Matching. The matching step involves k-mer matching of all user
queries against the entire 661k-HQ database using a modified ver-
sion of COBS (v0.3, see below), based on the principle that the num-
ber of k-mer matches between a genome and a query correlates with
the alignment score72. Each phylogenetically compressed COBS
index is decompressed in memory and queried for the input user
sequences, reporting all matches between the queries and genomes
in the current batch with a sufficient (user-specified) proportion
of matching k-mers. The computed matches are then aggregated
across all batches and, for each query, only a (user-specified) num-
ber of best matches, plus ties, are retained and passed to the sub-
sequent alignment step. Matching is parallelized by Snakemake62,

http://www.nature.com/naturemethods
https://doi.org/10.5281/zenodo.4602622
https://doi.org/10.5281/zenodo.4602622
https://doi.org/10.5281/zenodo.4602622
https://doi.org/10.5281/zenodo.4602622
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661_assemblies.tar
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661_assemblies.tar
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661_assemblies.tar
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661k.cobs_compact
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661k.cobs_compact
https://github.com/karel-brinda/phylign
https://github.com/karel-brinda/phylign

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

with the number of threads for each COBS instance adjusted based
on batch size.

Alignment. For each batch independently and fully in parallel,
Phylign then iterates over the phylogenetically compressed genome
assemblies, and if a given genome has at least one match passed from
the matching phase, it builds on the fly, in memory, a new Minimap2
(v2.24)40 instance for this genome and aligns all relevant queries to
this genome, while saving Minimap2 outputs in a batch-specific
output file. Once all batches are processed, the resulting align-
ments are aggregated and provided to the user in a modified
SAM format73.

Performance characteristics. The total matching time is primarily
driven by the time complexity of COBS, with decompression account-
ing for less than 2 CPU hours (Extended Data Fig. 9). In the alignment
step, decompression requires less than 1.5 CPU hours (Extended Data
Fig. 9), and the remainder of the time is primarily driven by the time
to create a new Minimap2 instance (estimated 0.3 CPU seconds per
instance in the current implementation). If the queries are long and
Minimap2 is used with a sensitive preset, the actual Minimap2 align-
ment time becomes the main time component (for example, in the
plasmid experiment in Supplementary Table 6).

Updated COBS. To integrate COBS into Phylign, new versions of
COBS36 were created (v0.2, v0.3; https://github.com/iqbal-lab-org/
cobs/). The updates include support for macOS, streaming of indexes
into memory and multiple bug fixes. The new versions of COBS are pro-
vided in the form of GitHub releases (https://github.com/iqbal-lab-org/
cobs/releases/) and pre-built packages on Bioconda65.

Benchmarking of the decompression time. Decompression
times were evaluated on the same desktop computer as the align-
ment experiments, separately for the phylogenetically compressed
assemblies versus COBS indexes and for in-memory decompression
(‘xzcat {file} > /dev/null’) versus on-disk decompression
(‘xzcat {file} > {tmpfile}’), resulting in four experiments.
Within each experiment, decompression was parallelized using GNU
Parallel (‘parallel -L1 -v --progress’), with time measured
using the GNU time command both for the whole experiment and for
each batch in a given compressed representation.

Evaluating Phylign
Overview of the benchmarking procedure. The search using Phylign
was evaluated on three datasets, representative of different query
scenarios: a database of antibiotic resistance genes, a database of
plasmids and an Oxford Nanopore sequencing experiment. In all cases,
the search parameters—including the number of hits of interest, the
COBS k-mer threshold and the Minimap preset—were tailored to each
specific query type. The experiments were conducted on an iMac with a
Quad-Core Intel CPU i7, 4.2 GHz with four physical (eight logical) cores
and 42.9 GB (40 GiB) RAM.

Time measurements. The wall clock and CPU time were measured
using GNU time and calculated as real and usr + sys, respectively.
The measurements were done for the matching and alignment steps
separately.

Memory measurements. We have not found any reliable way of meas-
uring peak memory consumption on macOS: both GNU time and the
psutil Python library were substantially underestimating the memory
footprint of our Snakemake pipeline. Therefore, we performed addi-
tional measurements on a Linux cluster using the SLURM job manager,
using jobs allocated with a configuration similar to the parameters of
our iMac computer. For ‘max_ram_gb’ set to 30 GB, we observed a peak

memory consumption of 26.2 GB, thus by 12.7% lower compared to
the specified maximum. Such a discrepancy is expected because the
‘max_ram_gb’ parameter defines an upper bound for the Snakemake
resource management62, representing the worst-case scenario for
parallel job combinations.

Resistance genes—ARG-ANNOT. The resistance genes search was
performed using the ARG-ANNOT database41 comprising 1,856 genes/
alleles, as provided on GitHub (https://github.com/katholt/srst2/
blob/master/data/ARGannot_r3.fasta/; retrieved on 24 July 2022).
The search parameters were set to require a minimum of 50% match-
ing k-mers, with 1,000 best hits plus ties taken for every gene/allele
query. Alignment was performed with the Minimap preset for short
reads (‘sr’).

Plasmids—the EBI plasmid database. The list of EBI plasmids was
downloaded from the associated EBI website (https://www.ebi.ac.uk/
genomes/plasmid.details.txt, retrieved on 3 April 2022), and individual
plasmids were subsequently downloaded from the ENA using curl and
GNU Parallel67. The search parameters were set to require at least 40%
matching k-mers (the threshold previously used in ref. 17), with 1,000
best hits plus ties taken for every plasmid. Alignment was performed
with the Minimap preset for long, highly divergent sequences (‘asm20’).

Oxford Nanopore reads. The ERR9030361 experiment, comprising
158,583 nanopore reads from an isolate of Mycobacterium tuber-
culosis, was downloaded from the Sequence Read Archive NCBI
database. The search parameters were set to require at least 40%
matching k-mers, with ten best hits plus ties taken for every read.
Alignment was performed with the Minimap preset for nanopore
reads (‘map-ont’).

Comparison to BIGSI. As we were unable to reproduce the origi-
nal plasmid search experiment17 with BIGSI on our iMac computer
(due to the required database transfer of 1.43 TB over an unstable FTP
connection), we used the values provided in the original publication17.
To ensure a fair comparison, we focused on evaluating the total CPU
time (sys + usr) and verified that our parallelization efficiency was
close to the maximal one (680% of 800% possible achieved, based on
the values in Supplementary Table 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Zenodo depositions for the five phylogenetically compressed test
collections are provided in the following table.

Dataset Compressed form Zenodo accession/URL

GISP Assemblies (XZ) https://doi.org/10.5281/zenodo.10070404

SC2 Assemblies (XZ) Available upon request (GISAID license).

NCTC3k Assemblies (XZ) https://doi.org/10.5281/zenodo.5533354

BIGSIdata De Bruijn graphs
(simplitigs
after k-mer
propagation; XZ)

https://doi.org/10.5281/zenodo.5555253

661k

Assemblies (XZ) https://doi.org/10.5281/zenodo.4602622

Assemblies (MBGC) https://doi.org/10.5281/zenodo.6347064

k-mer index
(COBS; XZ)

https://doi.org/10.5281/zenodo.7313926
https://doi.org/10.5281/zenodo.7313942
https://doi.org/10.5281/zenodo.7315499

661k-HQ k-mer index
(COBS; XZ)

https://doi.org/10.5281/zenodo.6845083
https://doi.org/10.5281/zenodo.6849657

http://www.nature.com/naturemethods
https://github.com/iqbal-lab-org/cobs
https://github.com/iqbal-lab-org/cobs
https://github.com/iqbal-lab-org/cobs/releases
https://github.com/iqbal-lab-org/cobs/releases
https://github.com/katholt/srst2/blob/master/data/ARGannot_r3.fasta/
https://github.com/katholt/srst2/blob/master/data/ARGannot_r3.fasta/
https://www.ebi.ac.uk/genomes/plasmid.details.txt
https://www.ebi.ac.uk/genomes/plasmid.details.txt
https://doi.org/10.5281/zenodo.10070404
https://doi.org/10.5281/zenodo.5533354
https://doi.org/10.5281/zenodo.5555253
https://doi.org/10.5281/zenodo.4602622
https://doi.org/10.5281/zenodo.6347064
https://doi.org/10.5281/zenodo.7313926
https://doi.org/10.5281/zenodo.7313942
https://doi.org/10.5281/zenodo.7315499
https://doi.org/10.5281/zenodo.6845083
https://doi.org/10.5281/zenodo.6849657

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Code availability
The GitHub repositories and Zenodo depositions for the developed/
modified software are provided in the following table.

References
55.	 Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis

and post-analysis of large phylogenies. Bioinformatics 30,
1312–1313 (2014).

56.	 Ondov, B. D. et al. Mash: fast genome and metagenome distance
estimation using minhash. Genome Biol. 17, 132 (2016).

57.	 Broder, A. Z. On the resemblance and containment of documents.
In Proc. International Conference on Compression and Complexity
of sequences 21–29 https://doi.org/10.1109/sequen.1997.666900
(IEEE, 1997).

58.	 Fan, H., Ives, A. R., Surget-Groba, Y. & Cannon, C. H. An assembly
and alignment-free method of phylogeny reconstruction from
next-generation sequencing data. BMC Genomics 16, 522 (2015).

59.	 Saitou, N. & Nei, M. The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425
(1987).

60.	 Howe, K., Bateman, A. & Durbin, R. QuickTree: building huge
Neighbour-Joining trees of protein sequences. Bioinformatics 18,
1546–1547 (2002).

61.	 Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction,
analysis, and visualization of phylogenomic data. Mol. Biol. Evol.
33, 1635–1638 (2016).

62.	 Köster, J. & Rahmann, S. Snakemake-a scalable bioinformatics
workflow engine. Bioinformatics 28, 2520–2522 (2012).

63.	 Li, H. Seqtk: toolkit for processing sequences in FASTA/Q formats.
GitHub https://github.com/lh3/seqtk (2016).

64.	 Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics 27,
764–770 (2011).

65.	 Grüning, B. et al. Bioconda: sustainable and comprehensive
software distribution for the life sciences. Nat. Methods 15,
475–476 (2018).

66.	 Grad, Y. H. et al. Genomic epidemiology of gonococcal resistance
to extended-spectrum cephalosporins, macrolides, and
fluoroquinolones in the United States, 2000–2013. J. Infect. Dis.
214, 1579–1587 (2016).

67.	 Tange, O. GNU Parallel: the command-line power tool.
The USENIX Magazine 36, 42–47 (2011).

68.	 Larsson, N. J. & Moffat, A. Off-line dictionary-based compression.
Proc. IEEE 88, 1722–1732 (2000).

69.	 Wan, R. Browsing and Searching Compressed Documents.
PhD thesis, Univ. Melbourne (2003).

70.	 Cock, P. J. A. et al. Biopython: freely available Python tools
for computational molecular biology and bioinformatics.
Bioinformatics 25, 1422–1423 (2009).

71.	 Chikhi, R., Limasset, A. & Medvedev, P. Compacting de Bruijn
graphs from sequencing data quickly and in low memory.
Bioinformatics 32, i201–i208 (2016).

72.	 Břinda, K., Sykulski, M. & Kucherov, G. Spaced seeds improve
k-mer-based metagenomic classification. Bioinformatics 31,
3584–3592 (2015).

73.	 Li, H. et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

Acknowledgements
This work was supported by the NIGMS of the National Institutes
of Health (R35GM133700 to M.B.), the David and Lucile Packard
Foundation (to M.B.), the Pew Charitable Trusts (to M.B.), the
Alfred P. Sloan Foundation (to M.B.), the European Union’s Horizon
2020 research and innovation programme (grant agreement nos.
872539, 956229 and 101047160 to R.C.) and the ANR Transipedia,
SeqDigger, Inception and PRAIRIE grants (ANR-18-CE45-0020,
ANR-19-CE45-0008, PIA/ANR16-CONV-0005 and ANR-19-P3IA-0001,
respectively; to R.C.). Portions of this research were conducted on the
O2 high-performance compute cluster, supported by the Research
Computing Group at Harvard Medical School, and on the GenOuest
bioinformatics core facility (https://www.genouest.org/).

Author contributions
K.B., Z.I. and M.B. designed and conceptualized the method and
algorithms and wrote the paper. K.B. wrote the initial draft of the
manuscript. K.B. and L.L. wrote the software. K.B. performed
the analyses for the study. N.Q.-O., R.C. and G.K. contributed to
the conception and design of the work. S.P. and K.S. contributed to the
software development. All authors reviewed and approved the final
version of the manuscript.

Competing interests
S.P. is currently employed by Eligo Bioscience. The remaining authors
declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-025-02625-2.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-025-02625-2.

Correspondence and requests for materials should be addressed to
Karel Břinda or Michael Baym.

Peer review information Nature Methods thanks David Koslicki,
Rob Patro and Harihara Subrahmaniam Muralidharan for their
contribution to the peer review of this work. Primary Handling Editor:
Lin Tang, in collaboration with the Nature Methods team.
Peer reviewer reports are available.

Reprints and permissions information is available at
www.nature.com/reprints.

Software Description GitHub repository Zenodo accession

Phylign (v0.2.0) Snakemake
pipeline

https://github.
com/karel-brinda/
phylign/

https://doi.org/
10.5281/zenodo.
10828249

MiniPhy
(v0.4.0)

Snakemake
pipeline

https://github.
com/karel-brinda/
miniphy/

https://doi.org/
10.5281/zenodo.
10798914

MiniPhy-COBS
(v.0.0.1)

Snakemake
pipeline

https://github.
com/leoisl/
miniphy-cobs/

https://doi.org/
10.5281/zenodo.
14212997

ProPhyle
(modified, v0.3.3)

ProPhyle
metagenomic
classifier

https://github.
com/prophyle/
prophyle/

https://doi.org/
10.5281/zenodo.
11004671

COBS
(modified, v0.3)

COBS k-mer
indexer

https://github.
com/iqbal-lab-
org/cobs/

https://doi.org/
10.5281/zenodo.
14212977

Attotree (v0.1.6) An efficient
re-implementation
of the Mashtree
algorithm

https://github.
com/karel-brinda/
attotree/

https://doi.org/
10.5281/zenodo.
10945896

http://www.nature.com/naturemethods
https://doi.org/10.1109/sequen.1997.666900
https://github.com/lh3/seqtk
https://www.genouest.org
https://doi.org/10.1038/s41592-025-02625-2
https://doi.org/10.1038/s41592-025-02625-2
https://doi.org/10.1038/s41592-025-02625-2
https://doi.org/10.1038/s41592-025-02625-2
http://www.nature.com/reprints
https://github.com/karel-brinda/phylign
https://github.com/karel-brinda/phylign
https://github.com/karel-brinda/phylign
https://doi.org/10.5281/zenodo.10828249
https://doi.org/10.5281/zenodo.10828249
https://doi.org/10.5281/zenodo.10828249
https://github.com/karel-brinda/miniphy
https://github.com/karel-brinda/miniphy
https://github.com/karel-brinda/miniphy
https://doi.org/10.5281/zenodo.10798914
https://doi.org/10.5281/zenodo.10798914
https://doi.org/10.5281/zenodo.10798914
https://github.com/leoisl/miniphy-cobs
https://github.com/leoisl/miniphy-cobs
https://github.com/leoisl/miniphy-cobs
https://doi.org/10.5281/zenodo.14212997
https://doi.org/10.5281/zenodo.14212997
https://doi.org/10.5281/zenodo.14212997
https://github.com/prophyle/prophyle
https://github.com/prophyle/prophyle
https://github.com/prophyle/prophyle
https://doi.org/10.5281/zenodo.11004671
https://doi.org/10.5281/zenodo.11004671
https://doi.org/10.5281/zenodo.11004671
https://github.com/iqbal-lab-org/cobs
https://github.com/iqbal-lab-org/cobs
https://github.com/iqbal-lab-org/cobs
https://doi.org/10.5281/zenodo.14212977
https://doi.org/10.5281/zenodo.14212977
https://doi.org/10.5281/zenodo.14212977
https://github.com/karel-brinda/attotree
https://github.com/karel-brinda/attotree
https://github.com/karel-brinda/attotree
https://doi.org/10.5281/zenodo.10945896
https://doi.org/10.5281/zenodo.10945896
https://doi.org/10.5281/zenodo.10945896

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

b

a

1443
species

491 clusters
(if ≥20graphs)

dustbin
(if <20 graphs)

568 regular batches
(max 4000 graphs)

 6 dustbin batches
(max 1000 graphs)

574
batches

2600
species

141 clusters
(if ≥100 genomes)

dustbin
(if <100 genomes)

283 regular batches
(max 4000 genomes)

 22 dustbin batches
(max 1000 genomes)

305
batches

Extended Data Fig. 1 | Batching strategies for the 661k (a) and BIGSIdata (b) collections. Genomes are clustered by species, and clusters that are too small are placed
into a common pseudo-cluster called a dustbin. The resulting clusters and the dustbin are then divided into size- and diversity-balanced batches. For more information
on batching, see Methods and Supplementary Note 5.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Extended Data Fig. 2 | Quantification of phylogeny-explained data
redundancy in the five test collections. The plot depicts the percentage of
data redundancy that can be explained by the compressive phylogenies in
each of the five test collections. Explained redundancy is measured by bottom-
up k-mer propagation along the phylogenies performed by ProPhyle and
calculated as the proportion of duplicate k-mers removed by the propagation
(k = 31, canonical; see Methods for the formula). A k-mer distribution perfectly
explained by the associated compressive phylogeny (that is, all k-mers associated
with complete subtrees) would result in 100% phylogeny-explained redundancy.
The plot shows that for single-species batches (modeled by the GISP and

SC2 collections), the majority of the signal can be explained by their compressive
phylogenies, indicative of their extremely high phylogenetic compressibility
(cf. Extended Data Fig. 4a, b). In contrast, high-diversity batches (modeled by the
NCTC3k collection) have more irregularly distributed k-mer content due
to horizontal gene transfer combined with sparse sampling, indicative of their
lower compressibility (cf. Extended Data Fig. 4c). Large and diverse collections,
such as 661k and BIGSIdata, thus exhibit a medium level of phylogenetically
explained redundancies, with the level depending on the amount of noise
(higher for BIGSIdata and lower for 661k, as also visible in Extended Data Fig. 7).

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Extended Data Fig. 3 | Calibration of XZ as a low-level tool for phylogenetic
compression of assemblies. The comparison was performed using the
assemblies from the GISP collection, with genomes sorted left-to-right according
to the Mashtree phylogeny. In both plots, an asterisk denotes the mode selected
for phylogenetic compression in MiniPhy. a) The plot shows the compression
performance of XZ, GZip, and BZip2 in bits per bp as a function of compression
presets (-1, -2, etc.) with single-line FASTA. Given the specific sizes of dictionaries
and windows used in the individual algorithms and their presets, only XZ with a
level ≥ 4 was capable of compressing bacterial genomes beyond the statistical

entropy baseline (that is, approximately 2 bits per bp). M and MM denote
additional, manually tuned compression modes of XZ with increased dictionary
sizes (Methods), which slightly improved compression performance but
substantially increased memory and CPU time and were thus not used in
MiniPhy. b) The plot shows the impact of FASTA line length on compression
performance. With single-line FASTA (denoted by Inf), the compressed size is
reduced to 12% compared to the 40-bp-per-line version. The plot highlights the
importance of pre-formatting FASTA data before using general compressors
such as XZ.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Extended Data Fig. 4 | Comparison of three contrasting compression scaling
modes of microbial collections. The plots compare the scaling behavior of the
XZ, GZip, BZip2, and Re-Pair compressors on the SC2 (a), GISP (b), and NCTC3k
(c) collections, depicting the space per genome as a function of the number of
jointly compressed genomes, progressively increased on logarithmic scales.
The results highlight several key findings. First, XZ consistently outperforms the
other compressors. Second, for viral genomes all four compressors are able
to overcome the 2-bits-per-bp baseline thanks to their short genome length,
but only XZ is able to compress beyond this limit for bacterial genomes

(consistent with Extended Data Fig. 3a; the Re-Pair implementation used could
not compress bacterial genomes due to their size). Third, Re-Pair compression
can be nearly as effective as XZ for viruses, but its applicability to large
datasets is limited by its scalability. Fourth, the compressibility of divergent
bacteria is substantially limited even with the best compressors, with only a
4× improvement in per-genome compression for NCTC3k (while the highly
compressible SC2 and GISP collections show 171× and 105× improvements for the
same number of genomes).

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Extended Data Fig. 5 | Impact of within-batch genome order on the
compressibility of microbial collections. While a substantial part of the
benefits of phylogenetic compression comes from organizing genomes into
batches of phylogenetically related genomes, proper genome reordering
within individual batches is also crucial for maximizing data compressibility.

The plots demonstrate that the impact of within-batch reordering grows with the
amount of diversity included (GISP vs. NCTC3k) and with the number of genomes
(GISP vs. SC2). Accurate phylogenies inferred using RAxML provided a small
compression benefit for assemblies over trees computed using Mashtree (GISP).

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Extended Data Fig. 6 | Compression trade-offs for the five test collections and
for individual batches of the 661k collection. The plot illustrates the trade-off
between the per-genome size after compression and the number of bits per
distinct k-mer (k = 31, canonical). The larger points represent individual genome
collections and correspond to values from Supplementary Table 3. The smaller
points represent individual batches within the 661k collection, with colors

indicating the number of genomes in each batch. Overall, the plot reveals the
influence of genomic diversity on the resulting compression characteristics.
The trade-off follows an L-shaped pattern, where compressing genome groups
with high diversity leads to smaller space per k-mer but larger space per genome,
and vice versa for genome groups with low diversity.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Extended Data Fig. 7 | Distribution of the number of distinct k-mers in the top
20 species in (a) the 661k and (b) BIGSIdata collections. For the 661k collection,
colors represent the quality of the assemblies (LQ: low-quality, HQ: high-quality),
as determined as part of the quality control in the original publication. For

BIGSIdata, no quality control information is available. The numbers below the
species name indicate the number of samples within each category. The plots
were created for canonical 31-mers.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Extended Data Fig. 8 | Proportions of top 10 species (their corresponding
batches) in the 661k collection before and after phylogenetic compression.
The plot depicts the proportions of the top 10 species, the Dustbin
pseudo-cluster, and the remaining species grouped as Others, while comparing
the following four quantitative characteristics: the number of genomes, their
cumulative length, the size of the phylogenetically compressed assemblies,
and the size of the phylogenetically compressed COBS indexes (for k = 31).

Transitioning from the number of genomes to their cumulative length has only
a minor impact on the proportions (corresponding to different mean genome
lengths of individual species). However, the divergent genomes occupy a
substantially higher proportion of the collection after compression. Moreover,
despite genome assemblies and k-mer COBS indexes being fundamentally
different genome representations (horizontal vs. vertical, respectively), the
observed post-compression proportions in them were nearly identical.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-025-02625-2

Wall clock time Total CPU time

mem disk mem disk

0

1

2

3

4

Mode of decompression

H
ou

rs

real−cobs

real−asms

sys−cobs

sys−asms

user−cobs

user−asms

Extended Data Fig. 9 | Time required for decompressing the Phylign 661k-
HQ database. The wall clock and total CPU time required to decompress the
Phylign 661k-HQ database, both from disk and in memory, were measured on
an iMac desktop computer with 4 physical (8 logical) cores. The in-memory

decompression process, which is implemented in Phylign, was completed under
30 min. This duration represents only a fraction of the typical time required for
search experiments (see Supplementary Table 6).

http://www.nature.com/naturemethods

	Efficient and robust search of microbial genomes via phylogenetic compression

	Results

	Improved compression of large genome collections

	BLAST-like alignment to all bacteria on desktops in hours

	Discussion

	Online content

	Fig. 1 Overview of phylogenetic compression and its applications to different data types.
	Fig. 2 Results of phylogenetic compression.
	Extended Data Fig. 1 Batching strategies for the 661k (a) and BIGSIdata (b) collections.
	Extended Data Fig. 2 Quantification of phylogeny-explained data redundancy in the five test collections.
	Extended Data Fig. 3 Calibration of XZ as a low-level tool for phylogenetic compression of assemblies.
	Extended Data Fig. 4 Comparison of three contrasting compression scaling modes of microbial collections.
	Extended Data Fig. 5 Impact of within-batch genome order on the compressibility of microbial collections.
	Extended Data Fig. 6 Compression trade-offs for the five test collections and for individual batches of the 661k collection.
	Extended Data Fig. 7 Distribution of the number of distinct k-mers in the top 20 species in (a) the 661k and (b) BIGSIdata collections.
	Extended Data Fig. 8 Proportions of top 10 species (their corresponding batches) in the 661k collection before and after phylogenetic compression.
	Extended Data Fig. 9 Time required for decompressing the Phylign 661k-HQ database.

