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Abstract
Pooled sequencing-based fitness assays are a powerful and widely used approach to quantifying fitness of thousands of 
genetic variants in parallel. Despite the throughput of such assays, they are prone to biases in fitness estimates, and errors 
in measurements are typically larger for deleterious fitness effects, relative to neutral effects. In practice, designing pooled 
fitness assays involves tradeoffs between the number of timepoints, the sequencing depth, and other parameters to gain as 
much information as possible within a feasible experiment. Here, we combined simulations and reanalysis of an existing 
experimental dataset to explore how assay parameters impact measurements of near-neutral and deleterious fitness effects 
using a standard fitness estimator. We found that sequencing multiple timepoints at relatively modest depth improved esti-
mates of near-neutral fitness effects, but systematically biased measurements of deleterious effects. We showed that a fixed 
total number of reads, deeper sequencing at fewer timepoints improved resolution of deleterious fitness effects. Our results 
highlight a tradeoff between measurement of deleterious and near-neutral effect sizes for a fixed amount of data and suggest 
that fitness assay design should be tuned for fitness effects that are relevant to the specific biological question.
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Introduction

Accurate fitness measurements are central to questions in 
experimental evolution, quantitative genetics, and functional 
genomics. Traditional methods include approaches such as 
estimating maximum growth rate from growth curves (Hall 
et al. 2014) and quantifying colony sizes from spot assays 
(Baryshnikova et al. 2010). An alternative, and increas-
ingly used, approach is a competitive fitness assay in which 
a reference strain with known fitness is competed directly 
with a test strain. The relative fitness of the test strain can 
be inferred from its change in frequency compared to the 
reference, with either colony counts (Lenski et al. 1991) 
or fluorescence as a readout (Breslow et al. 2008; Thomp-
son et al. 2006). However, pairwise competition assays are 

lower throughput and challenging to scale to thousands of 
measurements.

Competitive fitness assays can be adapted from meas-
uring fitness of a single test strain per assay to measuring 
fitnesses of several thousand strains in parallel. This typi-
cally involves uniquely tagging each strain with a DNA bar-
code and tracking changes in the frequency of the barcodes 
over time using deep sequencing (Smith et al. 2009, 2010). 
Applications of such sequencing based fitness measurements 
and phenotyping range from CRISPR (Shalem et al. 2014; 
Wang et al. 2014) and transposon mutagenesis screening for 
essential genes (van Opijnen and Camilli 2013; Wetmore 
et al. 2015), genetic interaction screens (Du et al. 2017; Jaffe 
et al. 2017), deep mutational scanning of proteins (Fowler 
and Fields 2014; Fowler et al. 2010; Stiffler et al. 2015), 
codon usage (Kelsic et al. 2016), fitness measurements of 
thousands of adaptive mutations from evolution experiments 
(Venkataram et al. 2016), genetic crosses (Nguyen Ba et al. 
2022), and natural variants (Carrasquilla et al. 2022).

Despite their scalability, highly parallel sequencing-based 
fitness assays are prone to biases in estimation of fitness. 
Li et al. demonstrated that fold enrichment based fitness 
metrics cannot be quantitatively compared across pools 
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of strains with different underlying distributions of fitness 
effects, and developed FitSeq, a fitness estimation method 
that accounts for changes in the mean population fitness over 
time (Li et al. 2018, 2023). Their simulations also showed 
that measuring multiple timepoints makes fitness estimates 
more robust to changes in the distribution. However, uncer-
tainty in fitness measurements depend on the true fitness and 
are typically worse for more deleterious fitness effects. Con-
sequently, it is not evident if parameter regimes improving 
resolution of fitness measurements are the same regardless 
of the true fitness effect under investigation.

Here, we combined simulated fitness assays for a range of 
experimental regimes and reanalysis of a deeply sequenced 
transposon mutagenesis dataset to explore how experimen-
tal parameters impact uncertainty in fitness measurements 
across a wide range of fitness effects. Some of the results 
presented here have appeared in other work and are cited 
when appropriate (Li et al. 2018; Robinson et al. 2014); 
the purpose of this paper is to combine both our findings 
and these existing insights to derive recommendations for 
designing pooled sequencing-based fitness assays.

Note About Terminology

While we refer to fitness effects of mutations throughout 
the paper, the results can be extended to any collection of 
strains, for instance, derived from an evolution experiment, 
or from natural variation. For a mutant with a true fitness 
effect s (relative to a reference strain), the change in fre-
quency of the mutant is given by:

where  f1 and  f2 are the frequencies of the mutants before and 
after selection, and t is the number of generations of selec-
tion. We note that this equation holds when the frequency 
of the reference lineage does not change. This assumption 
means that all the mutant (i.e., non-reference) frequencies 
are very small and do not impact mean fitness. In a sequenc-
ing-based fitness assay, we can estimate the fitness effect of 
the mutation as follows:

where  n1 and  n2 are the mutants counts before and after 
selection,  N1 and  N2 are total counts for those timepoints, 
and t is the number of generations of selection. Note that this 
equation also assumes that the frequency of the reference 
lineage does not change. While this estimator is biased for 
finite read depth and bottleneck size, we found in simula-
tions that this bias was negligible compared to measurement 
error (Fig. S1). This definition can be readily generalized 
to multiple timepoints as the slope of the linear regression 
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of ln(frequency) vs number of generations of selection in 
fitness assay. Under this definition, a neutral mutation has a 
fitness of 0, and an unviable mutation (say loss of an essen-
tial gene) has a fitness effect of -ln(2) = − 0.693 (Chevin 
2011). Note that a fitness value of -ln(2) is in units of inverse 
generations, and is pertinent to microbes dividing by binary 
fission.

Simulating Sequencing‑Based Fitness Assays

In our simulations, we decouple mutant abundances and 
the read counts from sequencing (Fig. 1A). We assume that 
the initial mutant abundances are Poisson distributed (with 
mean equal to the bottleneck size). Sequencing this mutant 
pool also leads to Poisson sampling, introducing additional 
noise, determined by the depth of sequencing. Each subse-
quent passaging in the fitness assay involves an additional 
bottleneck step.

We estimated fitness effects using linear regression of 
log(read count frequencies) vs number of generations, aver-
aging over 5 replicates for each mutant (in practice typically 
done with redundant barcoding). Lastly, for mutant trajecto-
ries that disappeared (either due to demographic stochastic-
ity, or due to deleterious fitness effect), we added a pseudo-
count, and restricted the regression to the first appearance 
of a zero read count. We made a few additional simplifying 
assumptions: we restricted our analysis to a focal mutant of 
interest, ignoring changes in the mean fitness of the popu-
lation. We further ignored noise in measurement of refer-
ence strains, and overdispersion in the initial distribution of 
mutant abundances.

We examined the distribution of initial read counts prior 
to the start of the fitness assay  (N(0)), involving Poisson sam-
pling during the bottleneck and sequencing steps. We found 
that the read counts were overdispersed (Fig. 1B), and the 
variance was significantly higher than the mean regardless 
of sequencing depth (Fig. 1C). Due to the overdispersion, 
they are a more accurate proxy for real sequencing counts 
datasets than naïve Poisson distributed counts.

Results

First, we investigated the relative importance of bottleneck 
size and sequencing depth on measurement error. We cal-
culated the uncertainty as the standard error of mean of fit-
ness estimates of five replicates. We found that for neutral 
mutations, while errors decrease with bottleneck size and 
sequencing depth, we found that increasing sequencing 
depth much more beyond the bottleneck size has little impact 
on measurement error (Fig. 2). This pattern persisted for 
slightly deleterious mutations.
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Errors in Fitness Measurements Depend on the True 
Fitness of a Mutant

Next, we explored how the uncertainty in fitness estimates 
depends on the “true” fitness of a mutation. We observed 
that errors are consistently larger for more deleterious 
mutations (Fig. 3A). Next, we turned to a deeply sequenced 
transposon sequencing dataset of E. coli B REL606 from 
our previous work (Limdi et al. 2022). We found a statisti-
cally significant negative correlation between the estimated 
fitness of disrupting a gene and the error in the estimate 
(p value < 0.001, Fig. 3B); this pattern was more evident 
when we binned by mutant effect sizes (Fig. 3C). This was 
consistent with the result that FitSeq errors are larger for 
deleterious mutations (Li et al. 2018). Because errors were 
dependent on the effect size of the mutation, we decided to 

explore how experimental parameters impact both near-neu-
tral fitness effects and deleterious fitness effects separately.

Near‑Neutral Mutants Require More Time for Fitness 
Effects to Exceed Measurement Noise

Given fixed sequencing over the entire experiment, we 
investigated how varying the fitness assay design impacted 
the measurement errors of near-neutral mutations. First, we 
explored the impact of changing the number of timepoints 
in the fitness assay, keeping the number of generations 
between timepoints fixed. We found that in simulations, for 
a given sequencing depth, measurement errors were lower 
with more timepoints (and generations of selection) but with 
less sequencing per timepoint (Fig. 4A). We then tested this 
hypothesis in data from the transposon sequencing dataset, 

Fig. 1  a Illustration of fitness assay simulation approach. b Distribution of  N(0) counts obtained after a bottleneck of size 50, and sequencing 
depth per timepoint of 100. c Scaling of variance and mean of  N(0) sequencing read counts obtained from simulations with bottleneck of size 50
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finding that over a 30-fold change in total sequencing depth 
over the experiment, errors were consistently smaller when 
sampling multiple timepoints and generations (Fig. 4B). 
Notably, an experiment with 3 ×  105 reads spread out over 
five timepoints led to better estimates than  107 reads over 
two timepoints.

In the above analysis, both number of timepoints and 
number of generations of selection were varied simultane-
ously. We next probed the effect of changing the frequency 
of sequencing the mutant pools, keeping the total numbers 

of generations of selection constant. In both simulations 
and experimental data, we found that at low sequencing 
depths, sequencing only at two timepoints ~ 26.5 genera-
tions apart performed better than sequencing five time-
points ~ 6.6 generations apart (Fig. 4C, D). However, at 
high sequencing depths, the measurement errors were 
nearly independent of frequency of sampling. These 
results suggest that measurements of near-neutral muta-
tions improve with longer durations of selection, while 
only weakly depending on frequency of sequencing.

Fig. 2  Diminishing returns of increasing sequencing depth well 
beyond the bottleneck size. Uncertainty in measurements is obtained 
as the standard errors of measurements obtained from simulated fit-

ness assays (fixed parameters: number of timepoints = 2, number of 
generations between timepoints =  log2(100))

Fig. 3  Errors in measurements depend on the true fitness of the muta-
tion. a Uncertainty in measurements, defined as the standard error of 
mean of 5 replicates. Values plotted are the average of fitness assays 
for 1,000 mutations. Parameters: number of timepoints = 200, number 
of generations =  log2(100), total sequencing depth per replicate = 200. 

b Error in fitness measurements (defined as standard error of mean) 
from a transposon sequencing dataset of E. coli B REL606, using two 
timepoints. c Same data as in b binned by fitness effects. Annotations 
above points indicate the number of genes in the bin
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Fig. 4  For fixed total sequencing depth over the experiment, increas-
ing number of generations of selection leads to better resolution of 
near-neutral fitness effects despite less sequencing per time point. 
Schematic indicates design of the fitness assay, with circles in blue 
indicating which timepoints were sequenced. a Simulations: uncer-
tainty in fitness estimates for a neutral mutation as a function of 
timepoints (and number of generations, interval =  log2(100) genera-
tions) keeping total sequencing depth per mutant constant over the 
experiment. b Reanalysis of the TnSeq dataset: measurement uncer-
tainty as a function of timepoints (and number of generations, inter-

val =  log2(100) generations), keeping total reads in the experiment 
constant. c Simulations: uncertainty in fitness estimates keeping 
total sequencing depth per mutant and total generations of selection 
constant (26.5 generations), while varying number of generations 
between sequencing. d Reanalysis of TnSeq dataset: measurement 
uncertainty in fitness estimates keeping total reads over the experi-
ment and total generations of selection constant (26.5 generations), 
while varying number of generations between sequencing. Since 
there is no ground truth of neutrality, we averaged over the measure-
ment errors for genes in the range of (-0.05, 0.05)
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For Deleterious Mutations, Increasing Timepoints 
and Generations of Selection at Fixed Total 
Sequencing Leads to Less Usable Data

Next, we investigated to what extent this intuition also held 
true for deleterious fitness estimates. For moderately dele-
terious mutations (s = − 0.1) we found that errors typically 
decreased with timepoints (and generations of selection). 

However, at low sequencing depth, (25 across the experi-
ment), we found that going from 4 to 5 timepoints made 
measurements less reliable (Fig. 5A). To investigate this, 
we examined the average number of timepoints used in 
calculating fitness estimates. At low total depth, increasing 
timepoints (and therefore reducing sequencing reads per 
timepoint) measured in fact led to a reduction in usable 

Fig. 5  For fixed total sequencing, adding timepoints leads to less usa-
ble data for estimating deleterious fitness effects in simulated assays. 
Schematic indicates fitness assay designs, with blue circles indicat-
ing which timepoints were sequenced. a Uncertainty in fitness meas-
urement for a mutant with true s = -0.1, as a function of timepoints 
measured (keeping number of generations between timepoints fixed: 

 log2(100). b Average number of timepoints that were used to calcu-
late fitness. c Uncertainty in fitness measurement for a mutant with 
true s = -0.25, as a function of timepoints measured (keeping number 
of generations between timepoints fixed:  log2(100). d Average num-
ber of timepoints that were used to calculate fitness (Color figure 
online)
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data from the fitness assay, contributing to noisier meas-
urements (Fig. 5B).

Similarly, for a strongly deleterious mutation (s = − 0.25), 
we found that errors increased from 3 to 4 timepoints for 
all but the highest sequencing depth (Fig. 5C). This trend 
corresponded to a decrease in the average number of time-
points used in fitness estimates (Fig. 5D). This suggests that 
for fixed sequencing depth, measuring earlier timepoints at 
greater depth provides better resolution of deleterious fitness 
effects, and that sampling additional timepoints can reduce 
the amount of useful data.

Tuning Frequency of Sequencing to Detect 
Deleterious Fitness Effects

While increasing the duration between sequencing (for fixed 
total depth) can be helpful for resolving near-neutral fitness 
effects, it is not necessarily optimal for deleterious fitness 

effects. Over tens of generations of selection, if no interme-
diate timepoints are sampled, it is not possible to distinguish 
a slightly deleterious mutation from an unviable mutation, 
as the expected mutant abundance and read counts is nearly 
zero for both scenarios. Under this scenario, the most delete-
rious fitness effect detectable can be estimated as:

Assuming equal total sequencing depths at two timepoints, 
this approximation follows from Eq. (2) because when tra-
jectories disappear to 0,  n2 = 1 (from adding a pseudocount 
of 1). We verified this approximation in experimental data, 
finding that the average of the ten most deleterious fitness 
effects, a proxy for the most deleterious effect detectable, 
matched the theoretical predictions well (Fig. 6). This com-
parison shows that true fitnesses below the theoretical bound 
cannot be estimated from pooled fitness assays, and if calcu-
lated, will be systematically over-estimated.

(3)smin = −ln(N
1
)∕t

Fig. 6  Generations of selection between sequencing set a lower 
bound on fitness that can be inferred using pooled fitness assays. 
Schematic indicates fitness assay design, with blue circles indica-
tion timepoints that were sequenced. a Predicted lower bound as a 
function of number of generations, and sequencing depth, assuming 
that the mutant disappears after selection (see Eq.  3). b Average of 

the 10 most deleterious fitness effects estimated for a set of param-
eters (downsampling and number of generations of selection). We use 
this as a proxy for the resolution of deleterious effects in bulk fitness 
assays. Dotted line in indicates the fitness of an unviable mutation, 
-ln(2)
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Discussion

We found that sequencing more timepoints (over more 
generations of selection) at relatively lower sequencing 
depth, as opposed to fewer timepoints (and generations of 
selection) at very high depth, improves resolution of near-
neutral fitness estimates. Conversely, for deleterious fit-
ness effects, with additional time points there is less new, 
usable information obtained, as these variants are depleted 
over time. Our results highlight that the timescale of sam-
pling in fitness assays should be tuned to the timescale of 
change in mutant frequencies. Moreover, they suggest that 
there is no combination of experimental parameters that 
optimally resolves both ranges of fitness effects for a fixed 
amount of data.

A limitation of our simulations is that we make several 
simplifying assumptions in modeling fitness assays. We 
do not consider noise from PCR amplification and DNA 
extraction steps, which likely contribute to higher meas-
urement noise. We also do not account for changes in the 
mean fitness of populations over the course of the fitness 
assay. For a detailed discussion of how the underlying 
distribution of fitness effects impacts estimates of mutant 
fitness using log-fold change metrics, and more generally 
inferring fitnesses from barcode frequencies, we recom-
mend the following (Li et al. 2018, 2023; Ascensao et al. 
2023). While changing mean fitness can be corrected for 
using neutral, reference strains, any measurement errors 
in these lineages will propagate to fitness estimates of all 
mutants and can introduce systematic biases. Initial mutant 
abundances are not typically perfectly Poisson distributed, 
as generating mutant libraries involves growth steps which 
can skew abundances toward mutants that have a fitness 
advantage. Conversely, mutants growing poorly in the 
growth media (prior to the fitness assay) will have noisier 
measurements by virtue of starting off with fewer cells, 
and therefore read counts.

Our simulations and reanalysis of transposon sequenc-
ing data, combined with previously published results, can 
be distilled into principles for experimental design:

Identify Fitness Effects that are Relevant 
for the Biological Question at Hand

Errors in measurements depend on the true fitness of the 
mutations, and there exists a tradeoff between resolution of 
near-neutral fitnesses and deleterious fitness effects.

For Measurements Near Neutrality and Fixed Total 
Sequencing Budget, Sequence Mutant Pools at More 
Timepoints, with Less Sequencing Depth

Our reanalysis of a deeply sequenced transposons sequenc-
ing data shows that sequencing more timepoints (over 
longer selection periods) at lower sequencing depth out-
performs sequencing very deeply but for fewer genera-
tions of selection (Fig. 4B). While we find that there is no 
advantage to sequencing more timepoints if the period of 
selection is unchanged (Fig. 4C, D), it may provide addi-
tional robustness to fitness estimates.

Firstly, the mean fitness of the population can change 
over time depending on the underlying distribution of fit-
ness effects. This can lead to biased fitness estimates; for 
instance, neutral mutations may appear deleterious without 
any correction. Quantifying mutant abundance over mul-
tiple timepoints allows for use of methods such as FitSeq 
to correct for this bias. Secondly, beneficial mutations can 
occur on otherwise neutral or even deleterious over the 
course of the fitness assay purely due to chance. Sequenc-
ing multiple timepoints can allow for identifying such out-
lier events and excluding them from downstream analysis.

For Measurements of Deleterious Mutations 
and Fixed Total Sequencing Budget, Sequence 
at Higher Depth for Fewer Timepoints and Fewer 
Generations

For fixed amount of sequencing, adding more timepoints 
does not add meaningful information as deleterious muta-
tions will go extinct over time. As a starting point for 
parameters, we recommend using sequencing depth and 
number of generations of selection such fitness effects 
of interest are above this lower bound predicted in Eq. 3. 
Lastly, we recommend (from experience) always sequenc-
ing the mutant pools prior to any fitness assay, as deleteri-
ous mutations (or variants) disappear from the pool rapidly 
in a few generations.

Using Pilot Experiments and Simulations to Guide 
Fitness Assay Design

We present an approach for tuning fitness assay design; we 
suggest performing a pilot fitness assay and sequencing 
experiment, using simulations as a starting point for experi-
mental parameters, and reanalyzing the data with subsam-
pling (either fewer reads or fewer timepoints). If the errors 
or resolution of fitness effects of interest do not change with 
subsampling, it is possible to collect data for more strains/
genetic backgrounds with the same total sequencing.
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Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00239- 023- 10110-7.
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