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Abstract. A central challenge in systems biology is the reconstruction
of biological networks from high-throughput data sets. A particularly dif-
ficult case of this is the inference of dynamic cellular signaling networks.
Within signaling networks, a common motif is that of many activators
and inhibitors acting upon a small set of substrates. Here we present a
novel technique for high-resolution inference of signaling networks from
perturbation data based on parameterized modeling of biochemical rates.
We also introduce a powerful new signal-processing method for reduction
of batch effects in microarray data. We demonstrate the efficacy of these
techniques on data from experiments we performed on the Drosophila
Rho-signaling network, correctly identifying many known features of the
network. In comparison to existing techniques, we are able to provide sig-
nificantly improved prediction of signaling networks on simulated data,
and higher robustness to the noise inherent in all high-throughput experi-
ments. While previous methods have been effective at inferring biological
networks in broad statistical strokes, this work takes the further step of
modeling both specific interactions and correlations in the background
to increase the resolution. The generality of our techniques should allow
them to be applied to a wide variety of networks.

1 Introduction

Biological signaling networks regulate a host of cellular processes in response
to environmental cues. Due to the complexity of the networks and the lack of
effective experimental and computational tools, there are still few biological sig-
naling networks for which a systems-level, yet detailed, description is known [1].
Substantial evidence now exists that the architecture of these networks is highly
complex, consisting in large part of enzymes that act as molecular switches to
activate and inhibit downstream substrates via post-translational modification.
These substrates are often themselves enzymes, acting in similar fashion.
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In experiments, we are able to genetically inhibit or over-express the levels
of activators, inhibitors and the substrates themselves, but rarely are able to
directly observe the levels of active substrate in cells. Without the ability to
directly observe the biochemical repercussions of inhibiting an enzyme in real-
time, determining the true in vivo targets of these enzymes requires indirect
observation of genetic perturbation and inference of enzyme-substrate relation-
ships. For example, it is possible to observe downstream transcription levels
which are affected in an unknown way by the level of active substrate [2].

The specific problem we address is the reconstruction of cellular signaling
networks studied by perturbing components of the network, and reading the
results via microarrays. We take a model-based approach to the problem of
reconstructing network topology. For every pair of proteins in the network, we
predict the most likely strength of interaction based on the data, and from this
predict the topology of the network. This is computationally feasible as we are
considering a subset of proteins for which we know the general network motif.

We demonstrate the efficacy of this approach by inferring from experiments
the Rho-signaling network in Drosophila, in which some 40 enzymes activate and
inhibit a set of approximately seven substrates. This network plays a critical
role in cell adhesion and motility, and disruptions in the orthologous network in
humans have been implicated in a number of different forms of cancer [3]. This
structure, with many enzymes and few substrates (Fig. 1), is a common motif
in signaling networks [4, 5].

To complicate the inference of the Rho-signaling network further, not every
enzyme-substrate interaction predicted in vitro is reflected in vivo [6]. As such,
we need more subtle information than is provided by current high-throughput
protein-protein interaction techniques such as yeast two-hybrid screening [7, 8].

+ + ++ - - --

Activators Inhibitors

Substrates

Fig. 1. The many enzyme-few substrate motif. A triangular arrowhead represents ac-
tivation, a circular arrowhead inhibition.

To probe this network, we have carried out and analyzed a series of knockout
and overexpression experiments in the Drosophila S2R+ cell line. We measure
the regulatory effects of these changes using DNA microarrays. It is important
to note that microarrays measure the relative abundance of the gene transcript,
which can be used as a rough proxy for the total concentration of gene product.
What they do not elucidate, however, is the relative fraction of an enzyme in an
active or inactive state, which is crucial to the behavior of signaling networks.
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To reconstruct the network from measurement, rather than directly use the
microarray features corresponding to the proteins of interest, we instead use
correlations in observations of the affected downstream gene products.

A number of related techniques for inferring global patterns based on high-
throughput data exist. Many of these utilize the technique of probabilistic graph-
ical models [9, 10, 11, 12, 13]. While these techniques are effective for inferring
networks in broad statistical strokes, we increase the resolution and model the
rate coefficients of individual reactions. The mathematics of our methodology
is in fact isomorphic to a probabilistic graphical model approach; however as
our parameters correspond directly to physical quantities or coefficients, we are
able to dramatically narrow our model space when compared to a more general
technique such as Bayesian or Markov networks [9]. In doing so we are able to
gain both greater sensitivity, specificity, and robustness to noise. A related tech-
nique, based on modeling of rate kinetics in the framework of Dynamic Bayesian
Networks has been effective in modeling genetic regulatory networks [14]. Tech-
niques from information theory, such as ARACNE (Algorithm for the Recon-
struction of Accurate Cellular Networks) [15,16] and nonparameteric statistics,
such as GSEA (Gene Set Enrichment Analysis) [17] have also been used to infer
connections in high-throughput experiments. While not generally used for sig-
naling network reconstruction, GSEA notably has been popular recently [18,19],
in part for its efficacy in overcoming batch effect noise.

We take the novel approach of constructing and optimizing a detailed param-
eterized model, based on the biochemistry of the network we aim to reconstruct.
For the first part of the network model, namely the connections of the enzymes
to substrates, we know the specific rate equations for substrate activation and
inhibition. By modeling the individual interactions in like manner to the well-
established Michaelis-Mentin rate kinetics [20, 21, 14], we are able to construct
a model of the effects of knockout experiments on the level of active substrate.
Lacking prior information, we model the effect of the level of active substrate
on the microarray data by a linear function. If the only source of error were
uncorrelated Gaussian noise in the measurements, we could then simply fit the
parameters of this model to the data to obtain a best guess at the model’s
topology.

However, noise and “batch effects” [18] in microarray data are a real-world
complication for most inference methods, which we address in a novel way. Noise
in microarrays is seemingly paradoxical. On one hand, identical samples plated
onto two different microarrays will yield almost identical results [22,23]. On the
other hand, with many microarray data sets, when one simply clusters experi-
ments by similarity of features, the strongest predictor of the results is to group
by the day on which the experiment was performed. We hypothesize, in this
analysis, that the batch effects in microarrays are in fact other cellular processes
in the sample unrelated to the experimental state. Properly filtering the ever-
present batch effects in microarray data requires more than simply considering
them to be background noise. Specifically, instead of the standard approach of
fitting the data to our signal and assuming noise cancels, we consider the data
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to be a combination of the signal we are interested in and a second, structured
signal of the batch effects.

Fitting this many-parameter model with physical constraints to the actual
data optimizes our prediction for the signaling network, with remarkably good
results.

To test this method we have constructed random networks with structure
similar to the expected biology, and used these to generate data in simulated
experiments. We find that when compared to reconstructions based on näıve
correlation, GSEA, and ARACNE, we were able to obtain significantly more
accurate network reconstructions. That is to say, at every specificity we obtained
better sensitivity and vice-versa. The details of how GSEA and ARACNE were
used in this manner can be found in Sec. 3.1.

We have also reconstructed the Rho-signaling network in Drosophila S2R+
cells from a series of RNAi and overexpression experiments we performed. While
very little is experimentally known about this network, of the 40 pairs for which
we have any biological evidence, we were able to predict 26 correctly, considerably
better than chance (a p-value of 0.0079). It is important to remember that this
standard is far from certain, and the known data represents a small fraction
of the over 180 connections we aim to predict. Notably, many of the global
features of the predicted network are in line with what is believed from biological
experiments. While there is little doubt that with further experiments we will
predict a more accurate network, this is the first detailed systems-level model of
the Drosophila Rho-signaling network.

Contributions. We have introduced a novel parameterized model-based ap-
proach to signaling network inference from high-throughput data. We use this to
provide testable predictions for connections in the Drosophila Rho-signaling net-
work. Large-scale general statistical techniques have painted networks in broad
strokes. Given the broad generality of such modeling, and the prevalence of sim-
ilar motifs to the example studied here, the present approach is a crucial step in
the program of systems biology.

Additionally we have developed a method for incorporating a noise model into
this fit so as to greatly reduce the impact of batch effects in microarray data.
This approach to noise in microarrays is widely applicable.

2 Models and Algorithms

In broad terms, we first aim to derive a model of the effects of our perturbations
on the data whose parameters correspond to the edge weights of the cellular
signaling network we wish to reconstruct. We first model how the level of active
substrate changes in response to perturbations of the activators or inhibitors.
To do this we derive an equilibrium condition based on well-known biochemical
rate kinetics. We then make a linear model of how this affects the experimental
data.

To fully understand the data, however, requires more than simply a model
of the network. We need, as pointed out earlier, to model the noise, in order
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Fig. 2. The dynamics of an activator-inhibitor-substrate trio. The circled variables are
proportional to protein concentrations.

to account for correlations in the background levels on unperturbed repeat ex-
periments; we take a low-dimensional linear approximation of the batch effects
present in microarray data. By fitting the parameters of the resultant model to
the experimental data, we are able to predict both the topology and edge weights
of the signaling network.

2.1 Biochemical Model

We first illustrate our approach for a single activator-inhibitor-substrate trio be-
fore extending to the many-node case. We start by deriving the time dependence
of the concentration1 ρ of active substrate in terms of the concentrations ρ̄ of
inactive substrate, η of activator, α of inhibitor, and the base rates γ̄ of activa-
tion and γ of de-activation. Fig. 2 depicts these kinetics. As the rate at which
inactive substrate becomes active is proportional to its concentration times the
rate of activation and vice-versa,

dρ

dt
= −dρ̄

dt
= ρ̄ (γ̄ + η) − ρ (γ + α) . (1)

We are primarily interested in ρ, the level of active substrate, as the down-
stream effects of the substrate are dependent on this concentration. As the mea-
surements are taken several days after perturbation and are an average over
the expression levels of many individual cells, by ergodicity we expect to find
approximately the equilibrium (dρ/dt = 0) concentration of substrate.

Solving for ρ at equilibrium yields:

ρ =
κ (γ̄ + η)

γ̄ + η + γ + α
. (2)

where κ = ρ + ρ̄ is total concentration of the substrate, approximately available
from the microarray data. By choice of time units we can let γ̄ = 1. This result,
by no coincidence, is similar to the familiar Michaelis-Mentin rate kinetics.

1 Choice of units of concentration is absorbed by scalar factors of the fit once the xjk

and yjk coefficients are added; see Eq. 3.
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We now generalize the model to multiple substrates κk, interchangeable acti-
vators ηj with relative strength xkj , and inhibitors αj with relative strength ykj .
The equilibrium concentration of the level of active substrate ρk then becomes:

ρk =
κk

(
1 +

∑
j xkjηj

)

1 +
∑

j xkjηj + γk +
∑

j ykjαj
. (3)

Lacking more detailed biological information, and aiming to avoid the intro-
duction of unnecessary parameters, we assume a linear response from features in
the microarray. Specifically, for a vector of microarray feature data ϕ, we model
the effect as a general linear function of the levels of active substrate, of the form
aρ + r. Additionally we introduce a superscripted index z for those variables
which vary by experiment. The level, ϕz

i , of the ith feature in microarray z is in
our model:

ϕz
i =

∑
k

aik

⎛
⎝ κz

k

(
1 +

∑
j xkjη

z
j

)

1 +
∑

j xkjηz
j + γk +

∑
j ykjαz

j

⎞
⎠ + ri + βz

i + εz
i , (4)

where the batch effects β and noise ε are considered additively.

2.2 Noise Filtration

As batch effects in microarrays are highly correlated, our approach is to construct
a linear model of their structure. Empirically, batch effects tend to have a small
number, s, of significant singular values (from empirical data s � 4). In the
singular vector basis, we can model the batch effects as a (features×s) matrix c.
To determine the background as a function of experiment batch, we rotate by an
(s × batches) rotation matrix u. Thus cu =

∑
j cijujd is a (features × batches)

matrix whose columns are the background signal by batch. Finally to extract the
batch effect for a given experiment z, we multiply by the characteristic function
of experiments by batches, χ, where χz

d = 1 if experiment z happened in batch
d and is 0 otherwise. Our model of batch effects is then:

βi =
∑
l,d

ciluldχ
z
d. (5)

All together, our detailed model for experimental data based on the network,
experiments, and noise becomes:

ϕz
i =

∑
k

aik

⎛
⎝ κz

k

(
1 +

∑
j xkjη

z
j

)

1 +
∑

j xkjηz
j + γk +

∑
j ykjαz

j

⎞
⎠ + ri +

∑
l,d

ciluldχ
z
d + εi. (6)

2.3 Model Fitting

Having now constructed a model of our system, we minimize the least-squares
difference between the model predictions and observed data (detailed in Sec. 3.2),
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to obtain optimal model parameters. The resultant values of x and y predict
the relative strengths of the activator-substrate interactions.

It is important to keep in mind which parameters are known and which we
must fit. We know s and χ from experiment. In lieu of detailed knowledge of
the activity levels of the activator and inhibitor, we take κz

k, ηz
j and αz

j to be 1
normally, 0 on those experiments for which the gene is silenced, and 2 for those
in which it is overexpressed. The remaining fitting parameters of our model are
x, y, a, γ, r, c, and u.

For a vector of experimental data d, we construct, as above, a model for the
predicted data ϕ. Fitting the model to data is done by minimizing:

f(x, y, a, γ, r, c, u) =
∑
i,z

(dz
i − ϕz

i )
2
, (7)

where ϕz
i is given in Eq. 6, subject to the constraints

xkj , ykj , δk, κk ≥ 0 (8)

and the additional constraint that u is a rotation matrix. As the solution space
is non-convex and likely has local minima, we use a general trust-regions [24]
method for minimization starting at multiple starting points. The fit with lowest
objective value is taken to be the best predictor of the network.

To verify that we have more data than parameters, we consider a microarray
with Φ features and a network model with a total of θ activators and inhibitors
and σ substrates. Additionally we consider a 4-dimensional noise model for λ
batches. Then for ζ experiments, we have more data than parameters precisely
when:

ζ > σ + 4 +
(θ + 3)σ + 4λ − 10

Φ
(9)

In a realistic setting, for 26 enzymes, six substrates, with on average six experi-
ments per batch, and assuming each experiment has at least 50 features, then we
need to perform at least 14 experiments in order to have more data than param-
eters. As the batch effect model has substantially lower rank than the number
of batches, as long as there are at least five batches, over-fitting is unlikely.

In the above setting with 70 experiments, network optimization takes ap-
proximately 8 hours on a Powerbook G4 using an off-the-shelf constrained local
nonlinear optimization routine in the MATLAB Optimization Toolbox [25] to a
convergence tolerance of 1e−6. While we aim to find the network which globally
minimizes f , this trust-regions based local search technique occasionally reaches
the convergence threshold at a demonstrably sub-optimal value. Continuing to
optimize on a subset of the variables followed by repeated total optimization is
often sufficient to pass these obstacles. Nevertheless, this still yields a good net-
work prediction (see below). With more refined optimization tools, we will likely
make even more accurate predictions. While we find that in very noisy cases the
global minimum of f is smaller than that predicted by the actual connections,
an overfit of the data, in practice this is a good guess.
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3 Results

3.1 Simulations

We have generated simulated data on randomly created networks. The density
of activator-substrate and inhibitor-substrate connections was chosen to reflect
what is expected in the Rho-signaling network described in Sec. 3.2. From this,
we have generated model experiment sets consisting of one knockout twice of
each of the substrates and a single knockout of each activator and inhibitor in
batches in random order. To further mimic our biological data set we included
at least one baseline experiment in each batch. From this model we simulated
experimental data with both noise and a batch-effect signal and attempted to
fit the generated data.

To test against other techniques, we applied the statistics used by GSEA and
ARACNE, modified for use on our model data sets. While GSEA is not typically
used for signaling network reconstruct, its general usefulness in microarray anal-
ysis necessitates the comparison. ARACNE, on the other hand, while designed
for a similar situation, does not directly apply, and so needs to be modified to
make a direct comparison. As a baseline, we also computed the näıve (Pearson)
correlation of experimental states.

GSEA starts by constructing, for each experimental condition, two subsets
(“gene sets”) of the features, one positive and one negative, which are used as
indicators of the condition. To test whether a specific state is represented in a
new experiment, the Kolmogorov-Smirnov enrichment score of those subsets in
the new data is calculated (for details, see [17]). If the positive set is positively
enriched and the negative set negatively enriched, the test state is said to be
represented in the data. Likewise if the reverse occurs, the state is said to be
negatively represented. If both are positively or negatively enriched, GSEA does
not make a prediction. We are able to apply GSEA by computing positive and
negative gene sets based on perturbation data for the substrates and then testing
for enrichment in each of states in which we perturb an activator or inhibitor.

ARACNE, on the other hand, begins by computing the kernel-smoothed
approximate mutual information (AMI) of every pair of features (for details,
see [15]). In order to remove transitive effects, for every trio of features A, B, C,
the pair with the smallest mutual information is marked to not be an edge. The
remaining set of all unmarked edges is then a prediction of the network. As
already discussed, we do not have features in our experiment that correspond
directly to the levels we wish to measure. However, treating each experimental
state as a feature, we are able to apply the AMI metric to obtain the relative
efficacies of the activator and inhibitor perturbation experiments as predictors of
the substrate perturbations. We know from the outset that the network we are
trying to predict has no induced triangles, and so ARACNE would not remove
any of the edges. However, the relative strengths of these predictions yield a
predicted network topology.
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On noiseless data, with only a minimal set of experiments and batch effects
of comparable size to the perturbation signal, we are able to achieve a perfect
network reconstruction which was not achieved by any of the other methods we
consider. On highly noisy data, we cannot reconstruct the network perfectly; how-
ever we consistently outperform the other methods in both specificity and sensitiv-
ity (Fig. 3). Moreover, we find that while the model alone out-performs other tech-
niques (comparably to AMI), the batch effect fit is of crucial importance. While
this is clearly a biased result, as the simulated data is generated by the same model
we assume in the fit, it does show that we are able to obtain a partial reconstruc-
tion even under high noise conditions. As this is a best-guess model from prior
biological knowledge, the assumptions are far from unreasonable.
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Fig. 3. Typical ROC curve for highly noisy simulated data. Our model (dark blue)
is closest to the actual network, which would be a point at [0, 1]. Model fitting with-
out batch effects (purple) is also considered. The other lines represent the predictions
obtained by a GSEA-derived metric (red), an ARACNE-derived metric (light blue),
and näıve correlation (green). The diagonal black line is the expected performance
of random guessing. This particular set of simulated data has no repeat experiments
for GAPs or GEFs, a batch signal of half the intensity of the perturbations, and an
approximate total signal-to-noise ratio of 1.5.

3.2 Biological Data

We used our method, discussed above, on forthcoming microarray data col-
lected from RNAi and overexpression experiments to predict the structure of
the Rho-signaling network in Drosophila S2R+ cells. This network consists of
approximately 47 proteins, divided roughly as 7 GTPases, 20 Guanine Nucleotide
Exchange Factors (GEFs) and 20 GTPase Activating Proteins (GAPs). Impor-
tantly, we have the additional information that, despite their misleading names,
the GEFs serve to activate certain GTPases and the GAPs serve to inhibit them.
The exact connections, however, are for the vast majority, unknown.
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Labeled aRNA, transcribed from cDNA, was prepared from S2R+ Drosophila
cells following five days incubation with dsRNA or post-transfection of overex-
pression constructs. The aRNA was then hybridized to CombiMatrix 4x2k Cus-
tomArrays designed to include those genes most likely to yield a regulatory effect
from a perturbation to the Rho-signaling network. After standard spatial and
consensus Lowess [26] normalization, we k-means clustered [27] the data into
50 pseudo-features to capture only the large-scale variation in the data.2

After fitting, we have computed the significance of our fit using the Akaike
and Bayesian Information Criteria (AIC and BIC) [28, 29]. These measure pa-
rameter fit quality as a function of the number of parameters, with smaller
numbers being better. AIC tends to under-penalize free parameters while BIC
tends to over-penalize, thus we computed both. As a baseline, we computed the
AIC/BIC of the null model. While a direct fit of the pseudo-features yielded a
lower AIC but not BIC, an iterative re-fit and solve technique, not unlike EM,
produced a significant fit by both criteria (Table 1, prediction in Fig 5). This
re-fitting was done by greedily resorting the groupings for meta-features based
on the model fitness and refitting the model to the new meta-features. As each
step strictly increases fit quality, and there are only finitely many sets of meta-
features, this is näıvely guaranteed to converge in O(nk) iterations for n features
and k meta-features. We find, however that the convergences generally to hap-
pens in around 5 iterations, leaving feature variance intact (an indication that
this is not converging to a degenerate solution).

Table 1. AIC/BIC of the null model, best näıve fit, and best fit

Model Fit (f) AIC BIC
Null Model (ϕz

i = 0) 0.9885 -8.389 -8.387
Best Fit 0.2342 -9.480 -8.366

Adapted Features 0.0328 -11.446 -10.332

To further test the accuracy of our model, we fit the model to four subsets
of the 87 experiments and tested the prediction quality on the remaining ex-
periments. The prediction error is calculated as the mean squared error of the
predicted values divided by the mean standard deviation by feature. We tested
on four sets: Sets 1 and 2 were chosen randomly to have nine (10.3% of exper-
iments) and seventeen (19.5% of experiments) elements respectively, of which
four of each are unduplicated experiments. Sets 3c and 4c were chosen randomly
to have nine elements but were constrained not to have two elements from the
same batch or experimental condition. We find that the model accurately pre-
dicts test set data (Table 2) for repeated experiments. Note that in Set 1, when

2 The fact there are fewer than 50 significant singular values in the data and the
linearity of a, r and β, indicates that we can not get more information from more
clusters.
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Table 2. Prediction error on test data.

Test Set Size #Unduplicated Total Fit (f) Test Set Fit Error
1 9 4 0.0280 0.1307 14.6%
2 17 4 0.0288 0.0632 6.10%

3c 9 0 0.0302 0.0371 3.13%
4c 9 0 0.0301 0.0517 4.06%

44% of the experiments in the test set are non-duplicated, the prediction error is
significantly higher. This indicates the necessity of both the batch and network
components of the model.

While very little is known about the actual structure of the network, our
reconstruction performed well when compared to previous biological data from
in vivo experiments [30, 31, 32, 33, 34, 35, 36, 37] or mammalian homology,
[38, 39, 40, 41, 42, 43, 44, 45, 46]. We predicted the existence of 57 of the 156 pos-
sible connections. Of the 23 known connections, both from in vivo experiments
and inferred by orthology, we successfully predicted 11. Of the 17 pairs of pro-
teins for which there is evidence they do not interact, we correctly predicted
15. This compares quite favorably to the predictions of other methods (Fig. 4).
On this set of known interactions and non-interactions, the probability that our
set of predicted connections overlapped correctly at least 26 times by chance is
0.0079. It is important to keep in mind that the known data represents less than
a quarter of the testable connections predicted by our method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
r
u

e
 P

o
s
it

iv
e
 R

a
t
e

Fig. 4. ROC curve of network predictions vs. known data. Our model (dark blue) is
closest, the curve discontinuity is on account of many of the predictions being zero.
The other lines represent the predictions obtained by our model without a batch effect
model (green), a GSEA-derived metric (purple), an ARACNE-derived metric (red),
and näıve correlation (light blue).
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Fig. 5. The predicted Rho-signaling network in Drosophila

Two global network features of note, that the GTPase Rho1 is more highly
connected than either Rac1/2 or Cdc42, and that the GEF Ephx has broad
specificity, were reflected in our predictions as well. We also note that the pre-
diction quality is not substantially different for GEFs (7 of 12 positives and 8 of
10 negatives) or GAPs (4 of 7 positives and 7 of 7 negatives).

4 Conclusion

In this paper we infer a signaling network from microarray data on perturbation
experiments. We do so by constructing a detailed model of both the network
and experimental background noise. We demonstrate the effectiveness of this
technique on simulated data, and use it to make testable predictions of the
connections in the Drosophila Rho-signaling network.

There are several natural extensions to our model. First, it is possible to
backtrack errors in prediction in order to guide future experiments. We can
also obtain a better fit on the unknown connections by incorporating further
biological knowledge. For example, if it is known that a given enzyme-substrate
pair does or does not interact, we can limit our model space to reflect this with an
appropriate constraint on xjk in Eq. 8. Recent advances in optimization promise
greater efficiency and scalability than the method we used.

Our approaches have more general applicability. Since the many enzyme-few
substrate motif is so common, we can use similar techniques to elucidate more
networks as the data sets become available. Furthermore, microarray data is used
in many contexts beyond network inference. The method of filtering batch effects
proposed here will provide a potentially very useful tool for future exploration.
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