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Certain dynamical systems, such as the shift map and the logistic map, have an edge of chaos in their
parameter spaces. On one side of this edge, the dynamics are chaotic for many parameter values, on the other
side of the edge they are periodic. We find that discrete-time dynamical systems with wavelet filtered feedback
from the dynamical variable to the parameters are attracted to a narrow parameter range near the edge of chaos,
the periodic boundary regime. We show that the migration from the chaotic regime to the periodic boundary
regime can be attributed to a conserved quantity, and find that such adaptation to the edge of chaos is
accompanied by a depopulation of the chaotic regime. We use this conserved quantity to determine the location
of the periodic boundary regime and show that its size is proportional to the size of the feedback. Further, we
compute the dynamics of the probability density for the parameter for a specific example.
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I. INTRODUCTION

The concept “adaptation to the edge of chaos” refers
to the idea that many complex adaptive systems, including
those found in biology, seem to naturally evolve toward a
narrow regime near the boundary between order and chaos
�1�. The suppression of chaos is not due to a sophisticated
external control �2–9� but induced by some simple self-
adjustment of the system. Packard �10� first showed that ad-
aptation to the edge of chaos occurs for a population of cel-
lular automata rules evolving with a genetic algorithm,
though the conclusions drawn from this work have come
under some dispute �11�. Self-organized critically �SOC�
�12� in avalanche and earthquake models is believed to be a
related phenomenon. However the connection between SOC
and edge of chaos is not completely obvious. This is mainly
due to the fact that in the SOC models �e.g., the sand pile�
some randomness is involved; therefore there is not a unique
way to define the Lyapunov exponent and this can induce
some confusion �13–15�. Models of coupled neurons with
self-adjusting coupling strength have been found to exhibit
robust synchronization and suppression of chaos �16�.
The edge of chaos occupies a prominent position because it
has been found to be not only the optimal setting for control
of a system �17�, but also an optimal setting under which a
physical system can support primitive functions for compu-
tation �18�, though once again this claim has been disputed
�19�. Zaslavsky and others �20,21� noted that the irregular
dynamics near the edge of chaos has unique properties
due to very long transients and they call that motion
pseudochaos.

Possibly the simplest models for adaptation to the edge of
chaos are self-adjusting map dynamics �22�. The numerical

findings have been confirmed experimentally �23� with
Chua’s circuit �24�. However, the theoretical analysis does
not predict the location of the narrow parameter regime near
the boundary to which the system evolves. Furthermore the
distribution function for the limiting parameter values differ
from numerical findings. This is believed to be due to the
fact that the dynamics of the parameters are approximated by
a diffusion process with a large diffusion constant in the
chaotic regime. In Melby’s system, the feedback from the
dynamical variable to the map parameter is computed with a
windowed Fourier band filter. This is a rather complicated
algorithm whereas wavelet filters �25,26� have a similar ef-
fect, but are much simpler in both implementation �27–29�
and analysis. Wavelet filters have been successfully used for
the compression of experimental data �30–37� as well as im-
ages in JPEG format �38�. Finitely supported wavelet filters
can be good models for the dynamics of slow variables in
naturally occurring processes �39,40�, though not all wave-
lets filters have these properties �41�.

In this paper, we study the evolution of self-adjusting
maps toward the edge of chaos. Maps can be good models
nonlinear and chaotic motion, and are mathematically more
tractable than nonlinear differential equations. In contrast to
earlier work, we assume that the feedback from the dynami-
cal variable is low-pass wavelet filtered. Wavelet filters can
mimic the filter function of damped oscillators which occur
in many natural systems. We use discrete wavelet filters that
have a finite support and have zero mean. Further we con-
sider the impact of correlations in the parameter dynamics
and determine the location of the narrow regime near the
edge of chaos to which the dynamics evolve. Finally we
determine the dynamics of the probability density of the pa-
rameter for a specific example.

II. SELF-ADJUSTING MAP DYNAMICS

We consider a self-adjusting map dynamics with the dy-
namical variable xn on the interval �0,1� and a self-adjusting
parameter an

xn+1 = f�xn,an� ,
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an+1 = an + sn�Fn, �1�

where the wavelet filter �Fn=� j=0
M−1gjxn+1−j has finite support

M and zero mean. For Daubechies wavelets of order one
with support M =4 the wavelet coefficients are g0
= �1−�3� /�2, g1=−�3−�3� /�2, g2= �3+�3� /�2, and g3

=−�1+�3� /�2 �26�. For a Haar wavelet the coefficients are
g0=−g1=1. During the adaption periods the size of the feed-
back is small and constant, i.e., 0�sn=s�1 at the time step
n= iN, iN+1, . . . , �i+1�N−1, i=1,3 , . . .. During the relax-
ation periods, n= iN, iN+1, . . . , �i+1�N−1, i=0,2 , . . . , I
there is no feedback, i.e., sn=0. For systems with a bounded
parameter range, amin�an�amax, the parameter is set equal
to the boundary value if the new value would be outside the
parameter range, i.e., an+1=amax if an+sn�Fn�amax and
an+1=amin if an+sn�Fn�amin. Further we assume that the
adaptation and relaxation periods are long compared to the
support of the filter, i.e., N�M, and long compared to the
relaxation time of the dynamical system xjN, j=1,2 , . . ., so
that it can reach the vicinity of an attractor before adaptation
is turned on or off again. The initial state x0 is assumed to be
random and equally distributed.

Figure 1 shows typical numerical results generated from
Eq. �1� for the shift map f =mod�anxn+rn�, where −5
�10−6�rn�5�10−6 are random and equally distributed

and 0�an�2. The modulo function is defined as mod�x�
=x−int�x�, where int�x� returns the integer portion of x. If
the initial parameter value is in the chaotic regime, i.e., an
�1 the parameter value is changing within a certain range
during the adaptation periods. Even though an stays within a
small range during each adaptation period, these ranges are
different at each adaptation period and eventually the param-
eter value reaches the period regime an�1 and stays there.

The total wavelet filter is defined as

Fn ª �
j=0

M−1

wjxn−j , �2�

where wj =�k=0
j gk, j=0,1 , . . . ,M −1 are the coefficients of

the integrated wavelet. wM−1=�k=0
M−1gk=0, since we assume

that the wavelet has zero mean. Hence Fn+1−Fn=�Fn and
Fn=Fn0

+�i=n0

n−1 �Fi if n0�n. In contrast to the parameter an,
the quantity bn defined as

bn = an − snFn, �3�

is conserved, i.e.

bn+1 = bn if sn+1 = sn, �4�

since bn+1=an+1−sn+1Fn+1= �an+snFn+1−snFn�−sn+1Fn+1

= �an−snFn�− �sn+1−sn�Fn+1=an−sFn=bn, except when sn+1

�sn at the time steps when the adaptation is switched on or
off. If an reaches the boundary of the parameter range during
the adaption period, bn is not constant. Then bn=biN

+�m=iN
n−1 �am+1−am−sm�Fm�, where sm is constant. In the fol-

lowing we consider trajectories where an does not reach the
boundary. Figure 2 shows the time dependence of bn for the
dynamics in Fig. 1.

We can use the conserved quantity to eliminate the dy-
namical variable an from Eq. �1�

xn+1 = g�xn, . . . ,xn−M+2,sn,biN� , �5�

where g�xn , . . . ,xn−M+1 ,s ,biN�= f�xn ,biN+sFn� and Fn

=F�xn , . . . ,xn−M+2�. While the conserved quantity is constant
during the adaptation periods and the relaxation periods, it
may change whenever the adaptation is switched on or off.

From Eqs. �1� and �4� we conclude that the dynamics
of bn, as illustrated in Fig. 2, is governed by the mapping
function

FIG. 1. The value of the dynamical variable xn versus time step
n �a� and the value of the parameter an versus time step n �b� for a
shift map, where s=0.4, N=150 and a Haar wavelet filter. an is
constant if the self-adjustment is off. If the self-adjustment is on and
an is in the chaotic regime an�1, the parameter value has an ir-
regular time dependence, but stays within a small range. In this
simulation the parameter value an, never reaches the boundaries of
the parameter range amin=0 and amax=2.

FIG. 2. The value of bn=an−sFn versus time step n. This plot
illustrates that bn is a conserved quantity except when the self-
adjustment is switched on/off.
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bn = �bn−1 − �− 1�isFiN if n = iN, i � N

bn−1 else,
� �6�

where FiN is the value of the filter function at the beginning
of an adaptation period, for i=0,2 , . . . and otherwise a value
of filter function at the beginning of a relaxation period.
Since we assume that the adaption and relaxation periods are
long enough for the system to reach its attractor, the range of
the values of the filter function FiN at the end of each periods
depends only on the value of the conserved quantity b, and
the size of the feedback s, if there is only one attractor which
covers a finite region of the state space. Hence for i
=0,2 , . . . we find FiN� �Fmin�biN ,s� ,Fmax�biN ,s�� and other-
wise FiN� �Fmin�biN ,0� ,Fmax�biN ,0��. Whenever adaptation
is switched on or off, the conserved quantity changes by a
certain amount which is proportional to s

biN + sFmin�biN,s� � b�i+1�N � biN + sFmax�biN,s�

if i = 0,2, . . . ,

biN − sFmax�biN,0� � b�i+1�N � biN − sFmin�biN,0� else.

�7�

Since bn is conserved during adaptation periods �see Eq. �6��
and M is constant, an stays within a small range of order s

biN + sFmin�biN,s� � an � biN + sFmax�biN,s� , �8�

where iN�n� �i+1�N and i=1,3 , . . . �see Fig. 1�.
In the following, we assume that for s=0 the parameter a

of the map dynamics has an edge of chaos at ae, i.e., there
exists a band of width 	�0 about ae such that when ae−	

�an�ae, there exist only periodic attractors with periods k
�kc, and when ae�an�ae+	 the dynamics contain chaotic
attractors.

Since wavelet filters act as subband filters �26�, i.e., low-
frequency band filters with cutoff period kc, they can detect
the edge of chaos. The filter output �Fn is very small or zero
for periodic time series with a recurrence time below kc,
whereas for chaotic time series �Fn is irregular. The edge of
chaos as detected by the wavelet filter ac depends on a
threshold �Ft, i.e., max	�F�an�	=�Ft for an=ac and
max	�F�an�	��Ft for an�ac. We determine max	�F�an�	
numerically. First we compute a trajectory xn for a given an
value and no feedback, sn=0, and then determine the maxi-
mum value of the sequence of �Fn values, max	�F�an�	
=max
�Fn 	�Fnª� j=0

M−1gjxn−j�. Figure 3 shows the edge of
chaos ac for a family of wavelets, including the Haar wave-
let, as a function of the length of the support M. The wavelet
coefficients of the Haar wavelet are g0=1, gM−1=−1, and
gi=0 for i=1,2 , . . . ,M −2. For the shift map and the logistic
map wavelets can detect the edge of chaos with reasonable
accuracy even if their support is small �see Fig. 3�, i.e., ac
�ae.

In the following we assume that the limiting value of �F
is zero, i.e., �F�0 for an�ac in a system with no feedback
s=0. Figure 4 shows the self-adjustment �Fn versus an for a
shift map where ac=1. For a system with feedback we con-
clude from Eq. �1� that if the parameter value is once below
the edge of chaos during a relaxation period, then the self-
adjustment is zero from then on, hence for all n
 iN

�Fn = 0 if aiN � ac, �9�

and if i� 
0,2 , . . . �. This means that the periodic boundary
region is an attractor for the parameter dynamics.

To investigate the statistical properties of the system, we
study a large ensemble where the initial parameter values are
homogeneously distributed in the interval I= �amin ,amax�,
where amin and amax are far away from the edge of chaos, so
that the boundary has no impact on the parameter dynamics
near the edge of chaos. Pn�b� is probability density of the bn

values at time n, hence P0=1/ �amax−amin�. Since an=bn dur-
ing the relaxation periods, the probability density of the an
values equals the probability density of the bn values, i.e., the
probability density of the an values is Pn�a�. Next we discuss
the change of the bn values from relaxation period to relax-

FIG. 3. The edge of chaos ac as detected by a wavelet filter as a
function of length of the support M, for the shift map xn+1

=mod�anxn+rn� �a� and a logistic map xn+1=anxn�1−xn� �b�. The
wavelet coefficients are g0=1, gM−1=−1, and gi=0 for i
=1,2 , . . . ,M −2. The threshold is �Ft=0.002. The theoretical val-
ues are ac=3.57 for the logistic map and ac=1 for the shift map.

FIG. 4. Typical �Fn-values versus the value for the parameter a
for a shift map with a Haar wavelet filter. This plot illustrates that
�Fn=0 if an�ac, where ac=1.

CONSERVED QUANTITIES AND ADAPTATION TO THE¼ PHYSICAL REVIEW E 73, 056210 �2006�

056210-3



ation period and how this affects Pn. If the parameter value is
below the edge of chaos it is constant even during adaptation
periods �see Eq. �9��. Hence, in the period regime the prob-
ability density Pn of the parameter b stays same or increases
at the expense of the probability density in the chaotic re-
gime for each b value

P�i+2�N 
 PiN if b � ac �10�

for i� 
0,2 , . . . �. In the following we show that growth of
the probability density occurs mostly in the boundary of the
periodic regime. Since the bn changes only by a small
amount given by Eq. �7� whenever adaptation is switched on
or off, and otherwise bn is constant, only parameter values in
the vicinity of the edge of chaos can reach the periodic re-
gime during one adaptation period. Systems with parameters
further away from the edge of chaos can thus reach the pe-
riodic regime only after adaptation has been repeatedly
switched on and off.

Systems with biN�ac during the relaxation period may
have a parameter value below ac during the adaptation pe-
riod. Figure 5 shows typical b values during the adaptation
period values as a function of the a value during the relax-

ation period for a shift map. Next we consider the case where
the b value is in the chaotic regime during a relaxation pe-
riod.

The minimum b value during the next adaptation period is
the lowest b value in the chaotic regime minus the maximum
change of the b values when the adaptation starts, i.e., bmin
=ac−sFmax�ac ,0�. This assumes that b values which are ini-
tially inside the chaotic regime do not have a significantly
larger change. Hence the b values which the system can
reach from the edge of chaos is lower than the b values that
it can reach from inside the chaotic regime, ac
−sFmax�ac ,0��b−sFmax�b ,0� for b�ac. This is the case if
Fmax�b ,0� does not increase rapidly at the edge of chaos, i.e.,
(Fmax�b ,0�−Fmax�ac ,0�) / �b−ac��1/s.

We use the same kind of reasoning to estimate the mini-
mum b value during the following relaxation period. The
minimum b value during the following relaxation period is
ab=bmin+sFmin�bmin ,s�. This assumes that b values which are
initially above bmin do not have a significantly smaller
change. Hence the b values which the system can reach from
bmin is lower than the b values that it can reach from b values
that are above bmin, i.e., bmin+sFmin�bmin ,s��b+sFmin�b ,s�
for b�bmin. This is the case if Fmin�b ,s� does not decrease
rapidly at the bmin, i.e., (Fmin�b ,s�−Fmin�bmin ,s�) / �b−bmin�

−1/s.

Next we have to check if ab�ac. If this is the case then b
values that are initially above ac can end up in the interval
�ab ,ac� within one adaptation/relaxation cycle. Once they are
in this interval they are trapped since this interval is in the

FIG. 6. The lower bound of the periodic boundary regime ab.
The squares indicate numerical values, the continuous lines defined
by Eq. �12� for a logistic map xn+1=anxn�1−xn� with a Haar wavelet
filter, where ac=3.449. The probability density increases in the in-
terval ab�a�ac.

FIG. 7. Rx,iN�xr�=�x,iN�xr���x, the probability of the xn values
in a bin of size �x=0.04 of a self-adjusting shift map with a Haar
wavelet filter and s=0.3. The squares are a histogram of the numeri-
cal values of relative class frequencies of the x-values determined
numerically where the sample size is N=106.

FIG. 8. Shows the conditional transition probability T�b 	a� /K
of the conserved quantity at the beginning of the adaptation period
and the corresponding numerical class frequencies �squares� for a
=1.1, sample size N=106, s=0.3, and K=200 classes.

FIG. 5. Typical b values during the adaptation period versus the
value for the parameter a during the preceding relaxation period for
a shift map with a Haar wavelet filter and s=0.3. This plot illus-
trates that bn=an if an�ac, where ac=1.
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periodic regime and their b value does not change from then
on. Typically ab=ac−sFmax�ac ,0�+sFmin�bmin ,s� is less than
ac since Fmin�bmin ,s��Fmin�ac ,0��Fmax�ac ,0�.

If ab�ac then we conclude from Eq. �7� that the probabil-
ity density of the b values increases in the periodic boundary
region and remains constant in the remainder of the periodic
regime

P�i+2�N��PiN if ab � b � ac

=PiN if b � ab,
� �11�

for i� 
0,2 , . . . �, where ab=ac−sFmax�ac ,0�+sFmin(ac

−sFmax�ac ,0� ,s). The periodic boundary region, ab�b�ac

is just below ac. If we approximate Fmin�bmin ,s�
�Fmin�bmin ,0�+s�

d
dsFmin�bmin ,0�+O�s2�, we obtain for the

lower bound of the periodic boundary region

ab = ac − s„Fmax�ac,0� − Fmin�bmin,0�… − s2

+ O�s3�
d

ds
Fmin�bmin,0� . �12�

Figure 6 illustrates the periodic boundary regime for a
self-adjusting logistic map dynamics and the parameter range
where the class frequencies increase. For the self-adjusting
logistic map we find numerically Fmax�ac ,0��Fmin�bmin ,0�
and d

dsFmin�bmin ,0��0.036 for M =2. Since the integral of

the probability density is equal to one, the increase of the
probability density in the periodic boundary region is at the
expense of the probability density in the chaotic regime. The
migration of the population from the chaotic regime to the
periodic boundary region is a concrete model for adaptation
to the edge of chaos. The population in the chaotic regime
evolves toward a narrow regime near the boundary between
order and chaos.

In the following we compute dynamics of the probability
density of the parameter values pn and the dynamics of the
probability density of the x-values �n for a specific example,
a self-adjusting shift map xn+1=mod�an�xn+rn� with a Haar
wavelet filter, where amin=0, amax=2 and rn is small band
limited white noise, −10−7�rn�10−7. For the self-adjusting
shift map, the edge of chaos is ac=1 and Fmax�ac ,0�=1 and
Fmin�bmin ,0�=0. Therefore the periodic boundary region is
1−s�b�1.

If 0�biN�1, the dynamics have a fixed point at xn=0,
and the limiting probability density of the xiN values for s
=0 is �iN=��x�, where � is the Kronecker’s � function. For
biN=1 the shift map is the identity map and �iN=��x0�. If
biN�1, the dynamics are chaotic. For small s, i.e., 0�s
�0.3 and biN values close to unity, i.e., 1�biN�1.5, the
limiting probability density of the x values can be approxi-
mated by

�iN�x� =
��x� if a�

acd

biN − ac
if 0 � x � biN − ac

d/x if biN − ac � x � 1

0 else,
� �13�

where d=1/ �1−ln�b−ac��=+�b+O2�ac+0.25−b�, for ac

=1 where = �2 ln 2−4� / �1+2 ln 2�2, and �=4/ �1+2 ln 2�2.
Figure 7 shows a comparison between a histogram of the
numerical class frequencies and analytical results in Eq. �13�.

Since b�i+1�N=biN−sF�i+1�N=biN−sx�i+1�N, the conditional
probability T�b 	a� that the conserved quantity has the value
b during an adaptation period, given that it is the value a
during the preceding relaxation period, is T�b 	a�=��i+1�N��a
−b� /s� for i=0,2 , . . .. Hence we replace x by �a−b� /s in Eq.
�13� and obtain

T�b	a� =
��a − b� if a � ac

d

s�a − ac�
, if 0 �

a − b

s
� a − ac

d

a − b
, if a − ac �

a − b

s
� 1

0 else.

� �14�

Figure 8 shows the conditional probability T�b 	a� and the
corresponding class frequencies for a=1.1. The probability

FIG. 9. The numerical values of the relative class frequencies
�squares� and the probabilities of the b values P9N= p9N /K of a
self-adjusting shift map with a Haar wavelet filter for s=0.25, N
=500, and K=100.

FIG. 10. The numerical values of the limiting relative class fre-
quency �squares� and the limiting probability P�b�= p�b� /K of the b
values of a self-adjusting shift map with a Haar wavelet filter, s
=0.25, N=500, and K=200.
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of the conserved quantity p�i+1�N�b�=�amin

amaxT�b 	a�piN�a�da. For b�ac this integral simplifies to p�i+1�N�b�=1
+�ac

b+sT�b 	a�piN�a�da. For the first few adaptation/relaxation cycles we can assume that the probability density in the chaotic
regime near the edge of chaos is roughly constant p�a�=1 for ac�a�ac+s. Then p�i+1�N�b�=1+�ac

b+sT�b 	a�da=1

+�ac

b+s d
a−bda. We use the approximation for T given in Eq. �14� and evaluate these integrals. We find that for the initial

adaptation/relaxation cycles i=0,2 , . . . ,2�amax−bc� /s, the probability of the conserved quantity is approximately

p�i+1�N�b� =
1 if amin � b � ac − s

���b + s − bc� + ��b + �ln
s

ac − b
� i

2
+ 1 if ac − s � b � ac

1 if ac � b � amax −
is

2

1 − C/s if amax −
is

2
� b � amax,

� �15�

where C=�ac−s
ac ���b+s−bc�+ ��b+�ln s

ac−b�db���+�s+ �
4 s2. During the relaxation periods the probabilities for classes in

the periodic regime is the same as during the first adaptation period, Pa,2Nak= Pb,2Nak if ak�ac. Figure 9 shows the class
frequencies for the b values and the probabilities computed with Eq. �15�.

Next we consider the limiting population after many cycles. Equation �15� indicates that the population in the periodic
boundary region is increasing at each adaption/relaxation cycle, until the chaotic regime is depopulated. Therefore we set the
probability density in the chaotic regime equal to zero. In addition we normalize i in the expression for the probability density
in the periodic boundary region, by a factor which makes the integral of the probability density equal to one, i.e.,
�0

1p�i+1�N�b�=1. With these two steps we obtain from Eq. �15�

p�b� = 
1 if amin � b � ac − s

���b + s − ac� + ��b + �ln
s

ac − b
��C + 1 if bc − s � bk � bc

0 if ac � b � amax.
� �16�

Equation �16� models the limiting distribution of the
population after many adaptation/relaxation cycles. Figure
10 shows the limiting class frequencies for the b values and
the limiting probabilities computed with Eq. �16�.

This example illustrates that after many adaptation/
relaxation cycles even systems which are initially far away
from the edge can migrate into the periodic boundary regime
�see Eq. �16� and Fig. 10�. Then the period boundary regime
is a global attractor for the parameter dynamics. In contrast,
for a single adaptation/relaxation cycle only systems very
close to the edge of chaos can migrate into the periodic
boundary regime due to the conserved quantity �see Eq. �7��.
During each cycle, adaptation to the edge of chaos is a very
local phenomenon. The periodic boundary regime is an at-
tractor for the parameter dynamics, but the basin of attraction
is small.

III. CONCLUSION

Many dynamical systems have an edge of chaos in their
parameter spaces. On one side of this edge, the dynamics is
chaotic for many parameter values, on the other side of the
edge it is periodic for all parameter values. Our work shows
that discrete-time dynamical systems with wavelet filtered

feedback from the dynamical variable to the parameters can
be attracted to a narrow parameter range near the edge of
chaos, the periodic boundary regime.

We have shown that all self-adjusting map dynamics with
wavelet filtered feedback �see Eq. �1�� has a conserved quan-
tity �see Eq. �4��, if the wavelet filer has a finite support and
a zero mean. This conserved quantity can be used to elimi-
nate the parameter dynamics from Eq. �1� and to obtain a
much simpler mapping function �Eq. �5��. We used this sim-
pler mapping function to show that the parameter dynamics
is bounded during an adaptation/relaxation cycle �see Eqs.
�7� and �8��. Then we showed numerically that subband fil-
ters, including wavelets, are typically good chaos detectors,
i.e., the filter value is zero or very small for periodic motion,
and rather large for chaotic motion. We describe the wave-
let’s ability to differentiate between periodicity and chaos
with the function Fmax and Fmax and showed that adaptation
to a narrow parameter regime near the edge of chaos occurs
�see Eq. �11��, if the wavelet filter is a sufficiently good
chaos detector �see Eq. �12��. Finally we studied one system
in detail: adaptation to edge of chaos of shift map with a
Haar wavelet filtered feedback. We showed that this theory
predicts the dynamics of the probability density �see Eqs.
�13�–�16��.
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